Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance.

Immunol Rev

Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.

Published: July 2016

Effective immune surveillance by CD8(+) cytotoxic T cells of intracellular microbes and cancer depends on the antigen presentation pathway. This pathway produces an optimal peptide repertoire for presentation by major histocompatibility (MHC) class I molecules (pMHCs I) on the cell surface. We have known for years that the pMHC I repertoire is a reflection of the intracellular protein pool. However, many studies have revealed that pMHCs I present peptides not only from precursors encoded in open-reading frames of mRNA transcripts but also cryptic peptides encoded in apparently 'untranslated' regions. These sources vastly increase the availability of peptides for presentation and immune evasion. Here, we review studies on the composition of the cryptic pMHC I repertoire, the immunological significance of these pMHC I, and the novel translational mechanisms that generate cryptic peptides from unusual sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916849PMC
http://dx.doi.org/10.1111/imr.12434DOI Listing

Publication Analysis

Top Keywords

cryptic peptides
12
immune surveillance
8
pmhc repertoire
8
peptides
5
hide unconventional
4
unconventional translation
4
translation yields
4
cryptic
4
yields cryptic
4
peptides immune
4

Similar Publications

After overexpression in a suitable host, recombinant protein purification often relies on affinity (e.g., poly-histidine) and solubility-enhancing (e.

View Article and Find Full Text PDF

Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance remains unclear. Here, we use transcriptome assembly, ribosome profiling, and proteomics to describe a population of 1,227 unannotated TE exonizing isoforms generated by mRNA splicing and recurrent in human populations.

View Article and Find Full Text PDF

Overexpression of a global transcriptional regulator LaeA was performed to awaken cryptic biosynthetic gene clusters (BGCs) in a marine sponge-derived fungus, Aspergillus niger L14, to obtain secondary metabolites (SMs), and resulted in the production of five previously undiscovered SMs in the wild-type strain, including three cyclic lipopeptides aspochracin (1), JBIR-15 (2) and sclerotiotide C (3), and kojic acid (4) and penicillic acid (5). Bioassays revealed that compound 2 displayed promising antimicrobial effects on Candida albicans with a MIC value of 32 µg/mL and 4 exhibited significant antioxidant activity with the similar IC50 value (5 µg/mL) to that of ascorbic acid. Transcriptome analysis results indicated that the overexpression of LaeA in strain L14 remarkably enhanced the expression of genes involved in polyketide synthase-nonribosomal peptide synthetase (PKS/NRPS) hybrids and amino acid metabolism, demonstrating an effective approach for a production of cyclic lipopeptides.

View Article and Find Full Text PDF

are abundant in the oceans and possess great potential in the synthesis of bioactive natural products. Although many secondary metabolite biosynthetic gene clusters have been identified from genomes, most of their products have not been characterized. In this study, endogenous constitutive promoters with high transcriptional activity were obtained from S16 through RNA-seq and a fluorescence assay of luciferase gene expression.

View Article and Find Full Text PDF

Cyclic tetrapeptides (CTPs) are a diverse class of natural products with a broad range of biological activities. However, they are extremely challenging to synthesize due to the ring strain associated with their small ring size. While chemical methods have been developed to access CTPs, they generally require the presence of certain amino acids, limiting their substrate scopes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!