AI Article Synopsis

  • A new monoterpenoid called nerol oxide-8-carboxylic acid and a new flavonoid glycoside named claulansoside A were discovered in the peels of Clausena lansium, alongside six known compounds.
  • The structures of these compounds were identified using advanced techniques such as 1D and 2D NMR and HR-ESI-MS analyses.
  • The study found that compounds 1 and 7 had antibacterial effects against Staphylococcus aureus, while compounds 3 and 6 demonstrated α-glucosidase inhibitory activity.

Article Abstract

One new monoterpenoid, nerol oxide-8-carboxylic acid (1), and one new flavonoid glycoside, claulansoside A (2), together with six known compounds, clausenamide (3), quercetin (4), isorhamnetin (5), dihydromyric (6), 2",3"-dihydroxyanisolactone (7) and (E,E)-8-(7-hydroxy-3,7-dimethylocta-2,5-dienyloxy)psoralen (8), have been isolated from the peels of Clausena lansium (Lour.) Skeels. Their structures were determined using a combination of 1D, and 2D NMR (HMQC, HMBC, COSY and NOESY) techniques, and HR-ESI-MS analyses. Compounds 1 and 7 exhibited antibacterial activity against Staphylococcus aureus with the diameter of inhibition zones of 11.5 mm and 14.2 mm. Compounds 3 and 6 showed α-glucosidase inhibitory activity in vitro.

Download full-text PDF

Source

Publication Analysis

Top Keywords

flavonoid glycoside
8
peels clausena
8
clausena lansium
8
monoterpenoid flavonoid
4
glycoside peels
4
lansium monoterpenoid
4
monoterpenoid nerol
4
nerol oxide-8-carboxylic
4
oxide-8-carboxylic acid
4
acid flavonoid
4

Similar Publications

A purple-pigmented (purple) rice seeds containing an anthocyanin, a major class of flavonoids, and their isogenic non-pigmented (white) seeds were exposed outside of the international space station (ISS) to evaluate the impact of anthocyanin on seed viability in space. The rice seeds were placed in sample plates at the exposed facility of ISS for 440 days, with the bottom layer seeds exposed to space radiation and the top layer seeds exposed to both solar light and space radiation. Though the seed weight of both purple and white seeds decreased after exposure to outer space, growth percentages after germination of purple and white seeds in the top layer were 55 and 15 %, respectively, compared to those in the bottom layer 100 and 70 %, respectively.

View Article and Find Full Text PDF

: , or star fruit, is a shrub known for its medicinal properties, especially due to bioactive metabolites identified in its roots and fruit with anti-cancer activity. However, the biological effects of its leaves remain unexplored. This study aimed to assess the effects of ethanolic extract from leaves on triple-negative breast cancer (TNBC), an aggressive subtype lacking specific therapy.

View Article and Find Full Text PDF

This study compared the effects of seed treatment with low-pressure cold plasma (CP) and atmospheric dielectric barrier discharge (DBD) plasma on morpho-biochemical traits in Bertoni plants cultivated by two methods: in soil and aeroponics. We investigated the impact of the treatments on the germination, plant growth, and content of secondary metabolites, namely steviol glycosides (SGs), rebaudioside A (RebA), and stevioside (Stev), as well as phenolic compounds and flavonoids. Seeds were treated for 2, 5, and 7 min with CP or DBD and 5 min with vacuum six days before sowing.

View Article and Find Full Text PDF

The leaves of have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from have not been fully identified.

View Article and Find Full Text PDF

Lignin Metabolism Is Crucial in the Plant Responses to (Shen) in L.

Plants (Basel)

January 2025

Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!