Noncovalent proteasome inhibitors introduce an alternative mechanism of inhibition to that of covalent inhibitors, e.g. carfilzomib, used in cancer therapy. A multistep hierarchical structure-based virtual screening (SBVS) of the 65,375 NCI lead-like compound library led to the identification of two compounds (9 and 28) which noncovalently inhibited the chymotrypsin-like (ChT-L) activity (Ki = 2.18 and 2.12 μM, respectively) with little or no effects on the other two major proteasome proteolytic activities, trypsin-like (T-L) and post-glutamyl peptide hydrolase (PGPH) activities. A subsequent hierarchical similarity search over the full NCI database with the most active tripeptide-based inhibitor 9 resulted in the discovery of the β5/β6-specific tripeptide derivative 38 that noncovalently binds the ChT-L site (Ki = 0.42 μM). The solution structure of 9 and 38 was solved by (1)H NMR spectroscopy and the binding mode of the inhibitors was elucidated by docking experiments using the yeast 20S proteasome. Compound 38 (IC50 = 26.7 μM) is slightly more potent than 9 (IC50 = 34.3 μM) at inhibiting survival of dexamethasone-resistant (MM.1R) human multiple myeloma cells. The identified ligand thus provides valuable insights for the future structure-based design of subtype-specific proteasome inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2016.05.049DOI Listing

Publication Analysis

Top Keywords

proteasome inhibitors
12
noncovalent proteasome
8
structure-based virtual
8
virtual screening
8
proteasome
5
inhibitors
5
identification noncovalent
4
inhibitors high
4
high selectivity
4
selectivity chymotrypsin-like
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!