Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Significant changes in plant phenology and flower production are predicted over the next century, but we know relatively little about geographic patterns of this response in many species, even those that potentially impact human wellbeing. We tested for variation in flowering responses of the allergenic plant, Ambrosia artemisiifolia (common ragweed). We grew plants originating from three latitudes in the Northeastern USA at experimental levels of CO2 (400, 600, and 800 µL L(-1)). We hypothesized that northern ecotypes adapted to shorter growing seasons would flower earlier than their southern counterparts, and thus disproportionately allocate carbon gains from CO2 to reproduction. As predicted, latitude of origin and carbon dioxide level significantly influenced the timing and magnitude of flowering. Reproductive onset occurred earlier with increasing latitude, with concurrent increases in the number of flowers produced. Elevated carbon dioxide resulted in earlier reproductive onset in all ecotypes, which was significantly more pronounced in the northern populations. We interpret our findings as evidence for ecotypic variation in ragweed flowering time, as well in responses to CO2. Thus, the ecological and human health implications of common ragweed's response to global change are likely to depend on latitude. We conclude that increased flower production, duration, and possibly pollen output, can be expected in Northeastern United States with rising levels of CO2. The effects are likely, however, to be most significant in northern parts of the region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021721 | PMC |
http://dx.doi.org/10.1007/s00442-016-3670-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!