Tumor-associated fibroblasts predominantly come from local and not circulating precursors.

Proc Natl Acad Sci U S A

Department of Pathology, The University of Chicago, Chicago, IL 60637; Committee on Immunology, The University of Chicago, Chicago, IL 60637; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637.

Published: July 2016

Fibroblasts are common cell types in cancer stroma and lay down collagen required for survival and growth of cancer cells. Although some cancer therapy strategies target tumor fibroblasts, their origin remains controversial. Multiple publications suggest circulating mesenchymal precursors as a source of tumor-associated fibroblasts. However, we show by three independent approaches that tumor fibroblasts derive primarily from local, sessile precursors. First, transplantable tumors developing in a mouse expressing green fluorescent reporter protein (EGFP) under control of the type I collagen (Col-I) promoter (COL-EGFP) had green stroma, whereas we could not find COL-EGFP(+) cells in tumors developing in the parabiotic partner lacking the fluorescent reporter. Lack of incorporation of COL-EGFP(+) cells from the circulation into tumors was confirmed in parabiotic pairs of COL-EGFP mice and transgenic mice developing autochthonous intestinal adenomas. Second, transplantable tumors developing in chimeric mice reconstituted with bone marrow cells from COL-EGFP mice very rarely showed stromal fibroblasts expressing EGFP. Finally, cancer cells injected under full-thickness COL-EGFP skin grafts transplanted in nonreporter mice developed into tumors containing green stromal cells. Using multicolor in vivo confocal microscopy, we found that Col-I-expressing fibroblasts constituted approximately one-third of the stromal mass and formed a continuous sheet wrapping the tumor vessels. In summary, tumors form their fibroblastic stroma predominantly from precursors present in the local tumor microenvironment, whereas the contribution of bone marrow-derived circulating precursors is rare.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941507PMC
http://dx.doi.org/10.1073/pnas.1600363113DOI Listing

Publication Analysis

Top Keywords

tumors developing
12
tumor-associated fibroblasts
8
circulating precursors
8
cancer cells
8
tumor fibroblasts
8
transplantable tumors
8
fluorescent reporter
8
col-egfp+ cells
8
col-egfp mice
8
fibroblasts
6

Similar Publications

Oncolytic viruses represent a promising class of immunotherapeutic agents for the treatment of malignant tumors. The proposed mechanism of action of various oncolytic viruses has initially been explained by the ability of such viruses to selectively lyse tumor cells without damaging healthy ones. Recently, there have emerged more studies determining the effect of the antiviral immunostimulating mechanisms on the effectiveness of treatment in cancer patients.

View Article and Find Full Text PDF

Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.

Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.

View Article and Find Full Text PDF

Cancer and Secretomes: HLA-G and Cancer Puzzle.

Adv Exp Med Biol

January 2025

Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.

Among the mechanisms, cancer cells develop to elude immune system, immune regulation and the use of molecules that play important roles in immune escape stand out. One of these molecules, the human leukocyte antigen G (HLA-G), plays an important role in the maintenance of immune tolerance and contributes to the progression of cancer by exerting an immunosuppressive effect. By creating an immunosuppressive field in the microscopic environment of the tumor, the aberrant expression of HLA-G facilitates the evading of cancer cells from the immune system and contributes to the progression of the disease.

View Article and Find Full Text PDF

CTCNet: a fine-grained classification network for fluorescence images of circulating tumor cells.

Med Biol Eng Comput

January 2025

Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, 230031, Anhui, China.

The identification and categorization of circulating tumor cells (CTCs) in peripheral blood are imperative for advancing cancer diagnostics and prognostics. The intricacy of various CTCs subtypes, coupled with the difficulty in developing exhaustive datasets, has impeded progress in this specialized domain. To date, no methods have been dedicated exclusively to overcoming the classification challenges of CTCs.

View Article and Find Full Text PDF

Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!