As many as 20-55% of patients with a history of traumatic brain injury (TBI) experience chronic endocrine dysfunction, leading to impaired quality of life, impaired rehabilitation efforts and lowered life expectancy. Endocrine dysfunction after TBI is thought to result from acceleration-deceleration forces to the brain within the skull, creating enduring hypothalamic and pituitary neuropathology, and subsequent hypothalamic-pituitary endocrine (HPE) dysfunction. These experiments were designed to test the hypothesis that a single diffuse TBI results in chronic dysfunction of corticosterone (CORT), a glucocorticoid released in response to stress and testosterone. We used a rodent model of diffuse TBI induced by midline fluid percussion injury (mFPI). At 2months postinjury compared with uninjured control animals, circulating levels of CORT were evaluated at rest, under restraint stress and in response to dexamethasone, a synthetic glucocorticoid commonly used to test HPE axis regulation. Testosterone was evaluated at rest. Further, we assessed changes in injury-induced neuron morphology (Golgi stain), neuropathology (silver stain) and activated astrocytes (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Resting plasma CORT levels were decreased at 2months postinjury and there was a blunted CORT increase in response to restraint induced stress. No changes in testosterone were measured. These changes in CORT were observed concomitantly with altered complexity of neuron processes in the PVN over time, devoid of neuropathology or astrocytosis. Results provide evidence that a single moderate diffuse TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction. Future experiments aim to evaluate additional HP-related hormones and endocrine circuit pathology following diffuse TBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002959 | PMC |
http://dx.doi.org/10.1530/EC-16-0031 | DOI Listing |
Curr Pain Headache Rep
January 2025
Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Entrance 1A, 2600 Glostrup, Copenhagen, Denmark.
Purpose Of Review: To evaluate the available studies on structural magnetic resonance imaging (MRI) of post-traumatic headache (PTH).
Recent Findings: A systematic search of PubMed and Embase databases (from inception to February 1, 2024) identified nine relevant structural MRI studies. These studies included adult participants diagnosed with acute or persistent PTH in adherence with any edition of the International Classification of Headache Disorders.
J Neurotrauma
December 2024
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Traumatic brain injury (TBI) after high-energy, behind helmet blunt trauma (BHBT) is an important but poorly understood clinical entity often associated with apnea and death in humans. In this study, we use a swine model of high-energy BHBT to characterize key neuropathologies and their association with acute respiratory decompensation. Animals with either stable or critical vital signs were euthanized within 4 h after injury for neuropathological assessment, with emphasis on axonal and vascular pathologies in the brainstem.
View Article and Find Full Text PDFEClinicalMedicine
September 2024
Department of Medicine, University of Cambridge, Cambridge, UK.
Background: Even patients with normal computed tomography (CT) head imaging may experience persistent symptoms for months to years after mild traumatic brain injury (mTBI). There is currently no good way to predict recovery and triage patients who may benefit from early follow-up and targeted intervention. We aimed to assess if existing prognostic models can be improved by serum biomarkers or diffusion tensor imaging metrics (DTI) from MRI, and if serum biomarkers can identify patients for DTI.
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
The First Clinical College, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
Background: Cognitive impairment associated with mild-to-moderate chronic traumatic brain injury (TBI) presents substantial challenges for which the functionality of the brain glymphatic system is a key area of interest. This study aimed to explore the functionality of the brain glymphatic system in patients with chronic cognitive impairment following mild-to-moderate TBI using diffusion tensor image analysis along the perivascular space (DTI-ALPS).
Methods: This was a prospective cross-sectional study.
J Neuroinflammation
December 2024
Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA, 19104, USA.
Traumatic brain injury (TBI) is a global health problem affecting millions of individuals annually, potentially resulting in persistent neuropathology, chronic neurological deficits, and death. However, TBI not only affects neural tissue, but also affects the peripheral immune system's homeostasis and physiology. TBI disrupts the balanced signaling between the brain and the peripheral organs, resulting in immunodysregulation and increasing infection susceptibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!