In eukaryotes, the best-described mechanism of endoplasmic reticulum (ER) export is mediated by coat protein complex II (COPII) vesicles, which comprise five conserved cytosolic components [secretion-associated, Ras-related protein 1 (Sar1), Sec23-24, and Sec13-31]. In higher organisms, multiple paralogs of COPII components are created due to gene duplication. However, the functional diversity of plant COPII subunit isoforms remains largely elusive. Here we summarize and discuss the latest findings derived from studies of various arabidopsis COPII subunit isoforms and their functional diversity. We also put forward testable hypotheses on distinct populations of COPII vesicles performing unique functions in ER export in developmental and stress-related pathways in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tplants.2016.05.010 | DOI Listing |
bioRxiv
December 2024
Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo NY 14203.
Secretory cargos are exported from the ER via COPII coated vesicles that have an inner matrix of Sec23/Sec24 heterotetramers and an outer cage of Sec13/Sec31 heterotetramers. In addition to COPII, Sec13 is part of the nuclear pore complex (NPC) and the regulatory SEA/GATOR complex in eukaryotes, which typically have one Sec13 orthologue. The kinetoplastid parasite has two paralogues: TbSec13.
View Article and Find Full Text PDFJ Cell Biol
January 2025
MRC Laboratory of Molecular Biology , Cambridge, UK.
Protein secretion is an essential process that drives cell growth and communication. Enrichment of soluble secretory proteins into ER-derived transport carriers occurs via transmembrane cargo receptors that connect lumenal cargo to the cytosolic COPII coat. Here, we find that the cargo receptor, SURF4, recruits different SEC24 cargo adaptor paralogs of the COPII coat to export different cargoes.
View Article and Find Full Text PDFJ Genet Genomics
November 2024
Cancer Metastasis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea. Electronic address:
The growth of Caenorhabditis elegans involves multiple molting processes, during which old cuticles are shed and new cuticles are rapidly formed. This process requires the regulated bulk secretion of cuticle components. The transmembrane protein-39 (TMEM-39) mutant exhibits distinct dumpy and ruptured phenotypes characterized by notably thin cuticles.
View Article and Find Full Text PDFNat Struct Mol Biol
November 2024
Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
Proteins traverse the eukaryotic secretory pathway through membrane trafficking between organelles. The coat protein complex II (COPII) mediates the anterograde transport of newly synthesized proteins from the endoplasmic reticulum, engaging cargoes with a wide range of size and biophysical properties. The native architecture of the COPII coat and how cargo might influence COPII carrier morphology remain poorly understood.
View Article and Find Full Text PDFJCI Insight
December 2024
Department of Internal Medicine.
Thrombopoietin (TPO) is a plasma glycoprotein that binds its receptor on megakaryocytes (MKs) and MK progenitors, resulting in enhanced platelet production. The mechanism by which TPO is secreted from hepatocytes remains poorly understood. Lectin mannose-binding 1 (LMAN1) and multiple coagulation factor deficiency 2 (MCFD2) form a complex at the endoplasmic reticulum membrane, recruiting cargo proteins into COPII vesicles for secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!