Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated group-housing experimental cage apparatus, in combination with a reversible neurotransmission blocking technique to examine the role of NAc D1- and D2-MSNs in the acquisition and reversal learning of a place discrimination task. We demonstrated that NAc D1- and D2-MSNs do not mediate the acquisition of the task, but that suppression of activity in D2-MSNs impairs reversal learning and increased perseverative errors. Additionally, global knockout of the dopamine D2L receptor isoform produced a similar behavioral phenotype to D2-MSN-blocked mice. These results suggest that D2L receptors and NAc D2-MSNs act to suppress the influence of previously correct behavioral strategies allowing transfer of behavioral control to new strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918782 | PMC |
http://dx.doi.org/10.1101/lm.042507.116 | DOI Listing |
Neurobiol Stress
January 2025
Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
Stress plays a significant role in the onset of numerous psychiatric disorders. Depending on individual resilience or stressor's nature, long-term changes to stress in the brain can lead to a wide range of behavioral symptoms, including social withdrawal, feelings of helplessness, and emotional overeating. The brain receptor molecules are key mediators of these processes, translating neuromodulatory signals into neuronal responses or circuit activity changes that ultimately shape behavioral outcomes.
View Article and Find Full Text PDFFront Psychiatry
January 2025
Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
Behavioral addictive disorders (BADs) have become a significant societal challenge over time. The central feature of BADs is the loss of control over engaging in and continuing behaviors, even when facing negative consequences. The neurobiological underpinnings of BADs primarily involve impairments in the reward circuitry, encompassing the ventral tegmental area, nucleus accumbens in the ventral striatum, and prefrontal cortex.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
Recreational use of nitrous oxide (NO) has risen dramatically over the past decades. This study aimed to examine its rewarding effect and the underlying mechanisms. The exposure of mice to a subanesthetic concentration (20%) of NO for 30 min for 4 consecutive days paired with NO in the morning and paired with the air in the afternoon produced apparent rewarding behavior in the conditioned place preference (CPP) paradigm.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Cyceron, 14000 Caen, France; Institut Universitaire de France (IUF).
Background: While Alcohol Use Disorder (AUD) is frequently associated with impulsivity, its structural brain substrates are still poorly defined. The triadic model of addiction postulates that impulsive behavior is regulated by an amygdalo-striatal impulsive subcomponent, a prefrontal and cerebellar reflective subcomponent, and an insular regulatory subcomponent. The objective of this study was thus to examine the relationships between self-evaluated impulsivity and structural brain abnormalities in patients with severe AUD (sAUD) using the triadic model as a theoretical framework.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
It has been proposed that social groups are maintained both by reward resulting from positive social interactions and by the reduction of a negative state that would otherwise be caused by social separation. European starlings, Sturnus vulgaris, develop strong conditioned place preferences for places associated with the production of song in flocks outside the breeding season (gregarious song) and singers are motivated to rejoin the flock following removal. This indicates that the act of singing in flocks is associated with a positive affective state and raises the possibility that reward induced by song in flocks may play a role in flock maintenance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!