Unlabelled: Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source. Of the eight best Impranil-degrading strains, the six best degraders belonged to the Cladosporium cladosporioides complex, including the species C. pseudocladosporioides, C. tenuissimum, C. asperulatum, and C. montecillanum, and the two others were identified as Aspergillus fumigatus and Penicillium chrysogenum The best Impranil degrader, C. pseudocladosporioides strain T1.PL.1, degraded up to 87% after 14 days of incubation. Fourier transform infrared (FTIR) spectroscopy analysis of Impranil degradation by this strain showed a loss of carbonyl groups (1,729 cm(-1)) and N-H bonds (1,540 and 1,261 cm(-1)), and gas chromatography-mass spectrometry (GC-MS) analysis showed a decrease in ester compounds and increase in alcohols and hexane diisocyanate, indicating the hydrolysis of ester and urethane bonds. Extracellular esterase and low urease, but not protease activities were detected at 7 and 14 days of culture in Impranil. The best eight Impranil-degrading fungi were also able to degrade solid foams of the highly recalcitrant PE-PU type to different extents, with the highest levels generating up to 65% of dry-weight losses not previously reported. Scanning electron microscopy (SEM) analysis of fungus-treated foams showed melted and thinner cell wall structures than the non-fungus-treated ones, demonstrating fungal biodegradative action on PE-PU.

Importance: Polyurethane waste disposal has become a serious problem. In this work, fungal strains able to efficiently degrade different types of polyurethanes are reported, and their biodegradative activity was studied by different experimental approaches. Varnish biodegradation analyses showed that fungi were able to break down the polymer in some of their precursors, offering the possibility that they may be recovered and used for new polyurethane synthesis. Also, the levels of degradation of solid polyether polyurethane foams reported in this work have never been observed previously. Isolation of efficient polyurethane-degrading microorganisms and delving into the mechanisms they used to degrade the polymer provide the basis for the development of biotechnological processes for polyurethane biodegradation and recycling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988181PMC
http://dx.doi.org/10.1128/AEM.01344-16DOI Listing

Publication Analysis

Top Keywords

polyether polyurethane
8
polyurethane foams
8
waste disposal
8
fungal strains
8
best impranil-degrading
8
polyurethane
7
biodegradative activities
4
activities selected
4
selected environmental
4
environmental fungi
4

Similar Publications

In this study, a new environmentally friendly and efficient method for recycling and reusing waste polyurethane sheets is proposed. SiO aerogel was prepared using the sol-gel method, and mullite whiskers were introduced to enhance its toughness. The whisker-toughened aerogel was used in the degradation of waste polyurethane to produce modified recycled polyol, which was subsequently used to prepare recycled polyurethane foam insulation material.

View Article and Find Full Text PDF

Harnessing Imine Chemistry for the Debonding-on-Demand of Polyurethane Adhesives.

ACS Appl Mater Interfaces

December 2024

Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Traditional adhesives often result in irreversible bonds, hindering disassembly and recycling processes. In response to the growing demand for sustainable practices, researchers have explored alternative bonding solutions. Debonding-on-demand adhesives represent a breakthrough, enabling selective weakening or breaking of adhesive bonds when desired and facilitating efficient disassembly, repair, and recycling of bonded materials.

View Article and Find Full Text PDF

This study aimed to enhance the initial adhesion performance of reactive polyurethane hot-melt adhesives by using a bio-based polycarbonate polyol instead of traditional polyester or polyether polyols and by incorporating thermoplastic polyurethane (TPU) in varied proportions. Adhesives synthesized from bio-based polycarbonate polyols and polypropylene glycol with MDI as the isocyanate were characterized chemically, thermally, and mechanically (FTIR, DSC, plate-plate rheology, DMA, and T-peel strength test). Adding 10-15 wt.

View Article and Find Full Text PDF

Polyurethane (PUR) soft foams release malodorous and potentially toxic compounds when exposed to oxidative conditions. Current chamber test methods cannot distinguish between pre-existing volatiles and those formed during oxidation, nor can they assess the formation rates of oxidation products. We subjected PUR soft foam to oxidative treatment in a continuous air flow at 120 °C.

View Article and Find Full Text PDF

Isocyanate-free polyurethane adhesives have attracted considerable attention as a promising environmentally friendly alternative. However, their progress has been hindered by insufficient bonding performance and weak solvent resistance, as well as the laborious synthesis processes involved. Herein, we successfully synthesized a high-performance lignin-based non-isocyanate adhesives (LNIPUs-G) through a one-pot strategy that combines the polycondensation of carbonate groups with polyether amines and aldehyde-amine chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!