Extractable nuclear antigen (ENA) antibody testing is often requested in patients with suspected connective tissue diseases. Most laboratories in Australia use a two step process involving a high sensitivity screening assay followed by a high specificity confirmation test. Multiplexing technology with Addressable Laser Bead Immunoassay (e.g., FIDIS) offers simultaneous detection of multiple antibody specificities, allowing a single step screening and confirmation. We compared our current diagnostic laboratory testing algorithm [Organtec ELISA screen / Euroimmun line immunoassay (LIA) confirmation] and the FIDIS Connective Profile. A total of 529 samples (443 consecutive+86 known autoantibody positivity) were run through both algorithms, and 479 samples (90.5%) were concordant. The same autoantibody profile was detected in 100 samples (18.9%) and 379 were concordant negative samples (71.6%). The 50 discordant samples (9.5%) were subdivided into 'likely FIDIS or current method correct' or 'unresolved' based on ancillary data. 'Unresolved' samples (n = 25) were subclassified into 'potentially' versus 'potentially not' clinically significant based on the change to clinical interpretation. Only nine samples (1.7%) were deemed to be 'potentially clinically significant'. Overall, we found that the FIDIS Connective Profile ENA kit is non-inferior to the current ELISA screen/LIA characterisation. Reagent and capital costs may be limiting factors in using the FIDIS, but potential benefits include a single step analysis and simultaneous detection of dsDNA antibodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pathol.2016.04.004 | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China.
Extracting uranium from nuclear wastewater is vital for environmental and human health protection. However, despite progress in uranium extraction, there remains a demand for an optimized adsorbent with improved capability, efficiency, and selectivity. To bridge this gap, 1,2,3,4-butane tetracarboxylic acid (BTCA)-modified MIL-101 was synthesized through a simple hydrothermal reaction between amino-modified MIL-101 (MIL-101-NH) and BTCA.
View Article and Find Full Text PDFFront Pharmacol
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
Background: L. (purslane) is a dietary plant and a botanical drug with antioxidant, antidiabetic, and anti-inflammatory activities. However, the effects of purslane against intestinal-inflammation-associated obesity are yet to be studied.
View Article and Find Full Text PDFHeliyon
January 2025
Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
Background: () is one of the most common pathogens associated with deep fungal infection, which represents a serious threat to human health. Although high mobility group box 1 (HMGB1) plays a key role in infection, its mechanism is unclear. We aimed to explore the regulation of small-molecule non-coding RNA (miRNA) for HMGB1 in infection.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
Background: Benign prostatic hyperplasia is a non-malignant growth of the prostate gland; it's the most common prostatic growth in aging men. 1,8-cineole is a natural compound that is extracted from the essential oil of several aromatic plants including Eucalyptus spp. Recent studies have demonstrated the anti-inflammatory, antioxidant, and anticancer activities of 1,8-cineole.
View Article and Find Full Text PDFAppl Radiat Isot
March 2025
Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India.
This study shows an implementation of neutron-gamma pulse shape discrimination (PSD) using a two-dimensional convolutional neural network. The inputs to the network are snapshots of the unprocessed, digitized signals from a BC501A detector. By exposing a BC501A detector to a Cf-252 source, neutron and gamma signals were collected to create a training dataset.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!