The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2016.05.032 | DOI Listing |
Drug Des Devel Ther
January 2025
Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People's Republic of China.
Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease in which macrophages produce cytokines that enhance inflammation and contribute to the destruction of cartilage and bone. Additive Sishen decoction (ASSD) is a widely used traditional Chinese medicine for the treatment of RA; however, its active ingredients and the mechanism of its therapeutic effects remain unclear.
Methods: To predict the ingredients and key targets of ASSD, we constructed "drug-ingredient-target-disease" and protein-protein interaction networks.
Introduction: Kinematic alignment (KA) in total knee arthroplasty (TKA) is by definition a pure femoral resurfacing procedure aiming to restore the individual prearthritic anatomy. However, when a 2 mm compensation is systematically used on the worn side, the variability in cartilage thickness in the unworn compartment might alter the accuracy of the technique. This study aimed to validate two intraoperative femoral cartilage thickness measurement techniques by comparing them to the photographic method, which measures cartilage thickness through pixel analysis of bone-cut images.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
January 2025
Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
Purpose: This study aimed to investigate whether combining the analysis of different magnetic resonance imaging (MRI) signs enhances the diagnostic accuracy of lateral meniscus posterior root tears (LMPRTs) in patients with anterior cruciate ligament (ACL) injuries. We hypothesised that analysing the cleft, ghost and truncated triangle signs and lateral meniscus extrusion (LME) measurement together would improve the preoperative MRI-based diagnosis of LMPRTs.
Methods: This retrospective study used prospectively collected registry data from two academic centres, including patients undergoing primary or revision ACL reconstruction (ACLR) and LMPRT repair.
Biotechnol J
January 2025
Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China.
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.
View Article and Find Full Text PDFEnviron Toxicol
January 2025
Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!