AI Article Synopsis

  • Transcranial random noise stimulation (tRNS) is a noninvasive technique that, when combined with Cogmed Working Memory Training, was tested in a double-blind trial to see if it enhances the effects of the training.
  • The study showed that while both active and sham stimulation participants improved in tasks similar to the training, there were no significant boosts in other cognitive abilities or distinct working memory tasks due to tRNS.
  • Ultimately, the findings suggested that adding tRNS to working memory training does not provide extra benefits in terms of performance improvements or the longevity of the training effects.

Article Abstract

Transcranial random noise stimulation (tRNS), a noninvasive brain stimulation technique, enhances the generalization and sustainability of gains following mathematical training. Here it is combined for the first time with working memory training in a double-blind randomized controlled trial. Adults completed 10 sessions of Cogmed Working Memory Training with either active tRNS or sham stimulation applied bilaterally to dorsolateral pFC. Training was associated with gains on both the training tasks and on untrained tests of working memory that shared overlapping processes with the training tasks, but not with improvements on working memory tasks with distinct processing demands or tests of other cognitive abilities (e.g., IQ, maths). There was no evidence that tRNS increased the magnitude or transfer of these gains. Thus, combining tRNS with Cogmed Working Memory Training provides no additional therapeutic value.

Download full-text PDF

Source
http://dx.doi.org/10.1162/jocn_a_00993DOI Listing

Publication Analysis

Top Keywords

working memory
24
memory training
16
transcranial random
8
random noise
8
noise stimulation
8
training
8
cogmed working
8
training tasks
8
working
6
memory
6

Similar Publications

Background: Mental health disorders are one of the leading causes of illness globally. The importance of psychosocial skills acquired in early childhood, such as executive functions, inhibitory control, emotional regulation, and social problem-solving, in preventing mental disorders has been reported. Furthermore, mental health care delivery is evolving, and mobile technology is becoming the medium for assessment and intervention.

View Article and Find Full Text PDF

Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering.

Sci Rep

January 2025

Department of Software, Faculty of Artificial Intelligence and Software, Gachon University, Seongnam-si, 13120, Republic of Korea.

Network security is crucial in today's digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.

View Article and Find Full Text PDF

A substantial proportion of patients suffer from Post-COVID Syndrome (PCS) with fatigue and impairment of memory and concentration being the most important symptoms. We here set out to perform in-depth neuropsychological assessment of PCS patients referred to the Neurologic PCS clinic compared to patients without sequelae after COVID-19 (non-PCS) and healthy controls (HC) to decipher the most prevalent cognitive deficits. We included n = 60 PCS patients with neurologic symptoms, n = 15 non-PCS patients and n = 15 healthy controls.

View Article and Find Full Text PDF

Protein succinylation, a post-translational modification wherein a succinyl group (-CO-CH₂-CH₂-CO-) attaches to lysine residues, plays a critical regulatory role in cellular processes. Dysregulated succinylation has been implicated in the onset and progression of various diseases, including liver, cardiac, pulmonary, and neurological disorders. However, identifying succinylation sites through experimental methods is often labor-intensive, costly, and technically challenging.

View Article and Find Full Text PDF

Accurately predicting carbon prices is crucial for effective government decision-making and maintenance the stable operation of carbon markets. However, the instability and nonlinearity of carbon prices, driven by the complex interaction between economic, environmental, and political factors, often result in inaccurate predictions. To confront this challenge, this paper proposed a carbon price prediction model that integrates dual decomposition integration and error correction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!