(14)N ultra-wideline (UW), (1)H{(15)N} indirectly-detected HETCOR (idHETCOR) and (15)N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of (14)N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. A case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW (14)N SSNMR spectra of stationary samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R''NH(+) and RR'NH2(+)) or other (i.e., RNH2 and RNO2) nitrogen environments. Directly-excited (14)N NMR spectra were acquired using the WURST-CPMG pulse sequence, which incorporates WURST (wideband, uniform rate, and smooth truncation) pulses and a CPMG (Carr-Purcell Meiboom-Gill) refocusing protocol. In certain cases, spectra were acquired using (1)H → (14)N broadband cross-polarization, via the BRAIN-CP (broadband adiabatic inversion - cross polarization) pulse sequence. These spectra provide (14)N electric field gradient (EFG) tensor parameters and orientations that are particularly sensitive to variations in local structure and intermolecular hydrogen-bonding interactions. The (1)H{(15)N} idHETCOR spectra, acquired under conditions of fast magic-angle spinning (MAS), used CP transfers to provide (1)H-(15)N chemical shift correlations for all nitrogen environments, except for two sites in acebutolol and nicardipine. One of these two sites (RR'NH2(+) in acebutolol) was successfully detected using the DNP-enhanced (15)N{(1)H} CP/MAS measurement, and one (RNO2 in nicardipine) remained elusive due to the absence of nearby protons. This exploratory study suggests that this combination of techniques has great potential for the characterization of solid APIs and numerous other organic, biological, and inorganic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp02855aDOI Listing

Publication Analysis

Top Keywords

spectra acquired
12
solid-state nmr
8
nitrogen environments
8
pulse sequence
8
14n
7
spectra
5
natural abundance
4
abundance 14n
4
14n 15n
4
15n solid-state
4

Similar Publications

The coffee-ring effect, involving spontaneous solute separation, has demonstrated promising potential in the context of patient serum analysis. In this study, an approach leveraging the coffee-ring-based analyte redistribution was developed for spectral analysis of surface-enhanced Raman scattering (SERS). By performing radical SERS scanning through the coffee-ring area and sampling across the coffee ring, complicated chemical information was spatially gathered for further spectra analysis.

View Article and Find Full Text PDF

In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) H-H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz).

View Article and Find Full Text PDF

Nano FTIR spectroscopy of liquid water in the -OH stretching region.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 29, SE-100 44 Stockholm, Sweden. Electronic address:

Nano-FTIR spectroscopy is a technique where atomic force microscopy (AFM) and infrared (IR) spectroscopy are combined to obtain chemical information with a lateral resolution of some tens of nm. It has been used to study numerous solid surfaces and recently also liquids including water have been examined by separating the liquid from the AFM tip by a thin lid. However, although the water stretching vibrations are significantly more intense than the bending vibration in conventional IR spectroscopy, only the bending vibration has been observed in nano-FTIR spectroscopy so far.

View Article and Find Full Text PDF

Purpose: To measure and validate elevated succinate in brain during circulatory arrest in a piglet model of cardiopulmonary bypass.

Methods: Using data from an archive of 3T H MR spectra acquired in previous in-magnet studies, dynamic plots of succinate, spectral simulations and difference spectra were generated for analysis and validation.

Results: Elevation of succinate during circulatory arrest was observed and validated.

View Article and Find Full Text PDF

This paper presents progress made toward the overarching goal to adapt single-photon-counting microcalorimeters to magnetic fusion energy research and demonstrate the value of such measurements for fusion. Microcalorimeter spectrometers combine the best characteristics of x-ray instrumentation currently available on fusion devices: high spectral resolution similar to an x-ray crystal spectrometer and broad spectral coverage sufficient to measure impurity species from Be to W. As a proof-of-principle experiment, a NASA-built x-ray microcalorimeter spectrometer has been installed on the Madison Symmetric Torus (MST) at the Wisconsin Plasma Physics Laboratory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!