Purpose. Single nucleotide polymorphisms of the CYBA gene may modify the risk of coronary artery disease (CAD). The aim of the present study was to investigate whether the (⁎)49A>G (rs7195830) polymorphism is associated with CAD. Materials and Methods. CYBA gene (⁎)49A>G polymorphism was determined in 481 subjects: 242 patients with premature CAD and 239 age and sex matched controls using the fluorescently labeled allele-specific oligonucleotides method. Results. The frequency of the (⁎)49G allele carrier state was significantly higher in patients than in controls (84.8% versus 76.6%, resp., P = 0.020), as well as the frequency of the (⁎)49G allele (62.2% versus 54.0%, P = 0.009). Both factors were associated with CAD in the analyzed population (OR = 1.70, 95% CI: 1.04-2.76 for GG+AG versus AA and OR = 1.40, 95% CI: 1.08-1.83 for (⁎)49G versus (⁎)49A). Carrier state of the (⁎)49G allele was a stronger and independent risk factor for CAD among women (OR = 4.35, 95% CI: 1.50-13.20, P = 0.002), as well as the (⁎)49G allele (OR = 2.25, 95% CI: 1.34-3.77, P = 0.001). The (⁎)49G allele carrier state was also associated with left ventricular hypertrophy in patients with coronary artery disease (P = 0.015). Conclusion. The CYBA gene (⁎)49A>G polymorphism modifies the risk of coronary artery disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895038 | PMC |
http://dx.doi.org/10.1155/2016/1539671 | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Rheumatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
Background: Interleukin-1 receptor-associated kinase1 (IRAK1) plays a considerable role in the inflammatory signaling pathway. The current study aimed to identify any association between (rs1059703) single nucleotide polymorphism (SNP) and vulnerability to rheumatological diseases in the pediatric and adult Egyptian population.
Patients And Methods: The current study included four patient groups: adult Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), juvenile systemic lupus erythematosus (JSLE), and juvenile idiopathic arthritis (JIA).
Mol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Faculty of Medicine, Department of Gastroenterology, Mersin University, Mersin, Turkey.
Background: Chemokines and their receptors, which regulate lymphoid organ development and immune cell trafficking, are integral to the mechanisms underlying viral control, hepatic inflammation, and liver damage in chronic hepatitis C (CHC) infection. This study explores the potential relationship between serum chemokine levels/polymorphisms and hepatitis C infection in affected individuals, with a particular focus on their utility as biomarkers across different stages of fibrosis.
Methods And Results: Serum levels of the chemokines CXCL11, CXCL12, and CXCL16 were measured in patients with mild/moderate and advanced fibrosis due to CHC, as well as in healthy controls, using the ELISA method.
Arch Dermatol Res
January 2025
Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Mexico.
Interleukin-10 (IL-10) is an immunomodulatory molecule that may play an immunosuppressive role in nonmelanoma skin cancer (NMSC), specifically basal cell carcinoma (BCC). We analyzed the role of IL10 promoter variants in genetic determinants of BCC susceptibility and their association with IL10 mRNA and IL-10 serum levels. Three promoter variants (- 1082 A > G, - 819 T > C, and - 592 A > C) were examined in 250 BCC patients and 250 reference group (RG) individuals.
View Article and Find Full Text PDFClin Genet
January 2025
Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck & Kiel University, Lübeck, Germany.
Split-hand/foot malformation syndrome (SHFM) is a congenital limb malformation that is both clinically and genetically heterogeneous. Variants in WNT10B are known to cause an autosomal recessive form of SHFM. Here, we report a patient born to unrelated parents who was found to be a compound heterozygote for missense variants in WNT10B: c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!