The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894823PMC
http://dx.doi.org/10.5702/massspectrometry.A0046DOI Listing

Publication Analysis

Top Keywords

leather goods
12
goods liquid
8
liquid chromatography/mass
8
chromatography/mass spectrometry
8
leather derived
8
leather
6
rapid accurate
4
accurate identification
4
identification animal
4
animal species
4

Similar Publications

The substantial waste generated during the processing of hides and skins as well as at other stages of manufacturing is a recurring issue in the leather industry that this article attempts to address. To investigate the mechanical and thermal characteristics of the resultant composites, this study suggests using leather waste from the bovine leather industry, analyzes the tanning process, and assesses the viability of mixing this waste with natural rubber (TSR-20). Without the inclusion of leather waste, the resulting composites had exceptional tensile strength, surpassing 100% of rubber's strength.

View Article and Find Full Text PDF

Background: Calf muscle weakness is a common symptom in slowly progressive neuromuscular disorders that lead to walking problems like instability and increased walking effort. The mainstay of treatment to improve walking in this population is the provision of ankle-foot-orthoses (AFOs). Since we are not aware of an up-to-date and complete overview of the effects of AFOs used for calf muscle weakness in slowly progressive neuromuscular disorders, we reviewed the evidence for the effectiveness of AFOs to improve walking in this patient group, in order to support clinical decision-making.

View Article and Find Full Text PDF

Biotechnological properties of Bacillus amylolyquefaciens B65 isolated from an artisanal tannery.

World J Microbiol Biotechnol

December 2024

Facultad de Ciencias Exactas, Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta, 4400, Argentina.

Leather industry is traditionally characterized by the use of large amounts of chemical agents, some of which are toxic to human health and the environment. However, during the last years, many efforts have been made with the aim of successfully implement enzymes as agents for different leather production stages. The lipopeptides produced by the Bacillus spp.

View Article and Find Full Text PDF

This study focused on a new approach for valorization of both ground tire rubber (GTR) and nitrate-containing wastewater via simultaneous devulcanization and denitrification. Initially, sulfur-based autotrophic denitrifiers were successfully enriched from three different seed sludge sources, biological nutrient removal (BNR) sludge, anaerobic digester sludge and BNR sludge of a leather organized industrial zone WWTP. Average nitrate removal efficiencies were 96-98%.

View Article and Find Full Text PDF

Co-assembled biomimetic fibrils from collagen and chitosan for performance-enhancing hemostatic dressing.

Biomater Sci

December 2024

The Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.

The development of safe and efficient hemostatic materials is medically important to prevent death due to trauma bleeding. Exploiting the synergistic effect between the D-periodic functional domain of collagen fibrils on platelet activation and cationic chitosan on erythrocyte aggregation is expected to develop performance-enhanced hemostatic materials. In this study, we prepared collagen fibrils and chitosan composite hemostatic materials by modulating the self-assembled bionic fibrillation of collagen with different degrees of deacetylation (DD, 50%, 70% and 85%) of chitosan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!