Dry eye disease is a relatively common ocular problem, which causes eye discomfort and visual disorders leading to a decrease in the quality of life. The aim of this study was to find a possible excipient for eye drop formulations, which is able to stabilize the tear film. A cationic thiolated polyaspartamide polymer, poly[(N-mercaptoethylaspartamide)-co-(N-(N',N'-dimethylaminoethyl)aspartamide)] (ThioPASP-DME), was used as a potential vehicle. Besides satisfying the basic requirements, the chemical structure of ThioPASP-DME is similar to those of ocular mucins as it is a protein-like polymer bearing a considerable number of thiol groups. The solution of the polymer is therefore able to mimic the physiological properties of the mucins and it can interact with the mucus layer via disulphide bond formation. The resultant mucoadhesion provides a prolonged residence time and ensures protective effect for the corneal/conjunctival epithelium. ThioPASP-DME also has an antioxidant effect due to the presence of the thiol groups. The applicability of ThioPASP-DME as a potential excipient in eye drops was determined by means of ocular compatibility tests and through examinations of the interactions with the mucosal surface. The results indicate that ThioPASP-DME can serve as a potential eye drop excipient for the therapy of dry eye disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893575 | PMC |
http://dx.doi.org/10.1155/2016/2647264 | DOI Listing |
ACS Nano
December 2024
Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
J Hazard Mater
January 2025
Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India; Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany. Electronic address:
Understanding processes regulating thioarsenate (HAsSO; n = 1 - 3; x = 1 - 3) mobility is essential to predicting the fate of arsenic (As) in aquatic environments under anoxic conditions. Under such conditions, natural organic matter (NOM) is known to effectively sorb arsenite and arsenate due to metal cation-bridged ternary complexation with the NOM. However, the extent and mechanism of thioarsenate sorption onto NOM via similar complexation has not been investigated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
J Am Chem Soc
November 2024
Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria.
Nature chooses a high-valent tungsten center at the active site of the enzyme acetylene hydratase to facilitate acetylene hydration to acetaldehyde. However, the reactions of tungsten-coordinated acetylene are still not well understood, which prevents the development of sustainable bioinspired alkyne hydration catalysts. Here we report the reactivity of two bioinspired tungsten complexes with the acetylene ligand acting as a four-: [W(CO)(CH)(PymS)] () and a two-electron donor: [WO(CH)(PymS)] (), with PMe as a nucleophile to simulate the enzyme's reactivity (PymS = 4-(trifluoromethyl)-6-methylpyrimidine-2-thiolate).
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2023
Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria. Electronic address:
Aim: The aim of the study was to evaluate the effect of thiolation of lipid-based nanoparticles (LNPs) on cellular uptake of nucleic acids.
Methods: A thiolated surfactant was synthesized by binding palmitic acid covalently to cysteine. Green fluorescent protein (GFP) encoding plasmid DNA (pDNA) was used as model nucleic acid and incorporated via hydrophobic ion-pairing with a cationic cholesterol derivate (DcCholesterol) in LNPs that were prepared by solvent injection method using the thiolated surfactant for surface decoration.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!