Background: This study was performed to assess the impact of irradiation on the tissue penetration depth of doxorubicin delivered during Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC).
Methods: Fresh post mortem swine peritoneum was cut into 10 proportional sections. Except for 2 control samples, all received irradiation with 1, 2, 7 and 14 Gy, respectively. Four samples received PIPAC 15 minutes after irradiation and 4 other after 24 hours. Doxorubicin was aerosolized in an ex-vivo PIPAC model at 12 mmHg/36°C. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections.
Results: Doxorubicin penetration after PIPAC (15 minutes after irradiation) was 476 ± 74 µm for the control sample, 450 ± 45µm after 1 Gy (p > 0.05), 438 ± 29 µm after 2 Gy (p > 0.05), 396 ± 32 µm after 7 Gy (p = 0.005) and 284 ± 57 after 14 Gy irradiation (p < 0.001). The doxorubicin penetration after PIPAC (24 hours after irradiation) was 428 ± 77 µm for the control sample, 393 ± 41 µm after 1 Gy (p > 0.05), 379 ± 56 µm after 2 Gy (p > 0.05), 352 ± 53 µm after 7 Gy (p = 0.008) and 345 ± 53 after 14 Gy irradiation (p = 0.001).
Conclusions: Higher (fractional) radiation dose might reduce the tissue penetration depth of doxorubicin in our ex-vivo model. However, irradiation with lower (fractional) radiation dose does not affect the tissue penetration negatively. Further studies are warranted to investigate if irradiation can be used safely as chemopotenting agent for patients with peritoneal metastases treated with PIPAC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910582 | PMC |
http://dx.doi.org/10.7150/jca.14714 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
The broader use of botanical pesticides has been limited by shorter residual activity on plants, slower onset of action, and higher costs compared with conventional pesticides. These challenges could be overcome by the development of simple, cost-effective, and long-lasting preventive nanocomposites for botanical pesticides. In this study, we successfully developed a low-cost ethyl cellulose (EC)-based delivery system for the botanical pesticide osthole (OST), designed to provide extended preventive protection against infestations.
View Article and Find Full Text PDFMol Pharm
January 2025
ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China.
Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, U.K.
Many different types of nanoparticles have been developed for photothermal therapy (PTT), but directly comparing their efficacy as heaters and determining how they will perform when localized at depth in tissue remains complex. To choose the optimal nanoparticle for a desired hyperthermic therapy, it is vital to understand how efficiently different nanoparticles extinguish laser light and convert that energy to heat. In this paper, we apply photothermal mass conversion efficiency (η ) as a metric to compare nanoparticles of different shapes, sizes, and conversion efficiencies.
View Article and Find Full Text PDFHead Neck
January 2025
Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, Australia.
Background: Subtotal and total glossectomies for advanced tongue cancer result in significant speech- and swallow-related morbidity, impairing quality of life. This prospective pilot study compares the safety and functional outcomes associated with using a chimeric innervated muscle and fasciocutaneous flap for soft tissue reconstruction.
Materials And Methods: A prospective, non-randomized controlled pilot study evaluated a standardized technique for tongue reconstruction using a chimeric innervated vastus lateralis muscle and anterolateral thigh fasciocutaneous flap.
Specimen-induced aberrations limit the penetration depth of standard optical imaging techniques in vivo, mainly due to the propagation of high NA beams in a non-homogenous medium. Overcoming these limitations requires complex optical imaging systems and techniques. Implantable high NA micro-optics can be a solution to tissue induced spherical aberrations, but in order to be implanted, they need to have reduced complexity, offering a lower surface to the host immune reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!