Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae.

Am J Bot

Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405 USA Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada.

Published: July 2016

Premise Of The Study: Like many other flowering plants, members of the Compositae (Asteraceae) have a polyploid ancestry. Previous analyses found evidence for an ancient duplication or possibly triplication in the early evolutionary history of the family. We sought to better place this paleopolyploidy in the phylogeny and assess its nature.

Methods: We sequenced new transcriptomes for Barnadesia, the lineage sister to all other Compositae, and four representatives of closely related families. Using a recently developed algorithm, MAPS, we analyzed nuclear gene family phylogenies for evidence of paleopolyploidy.

Key Results: We found that the previously recognized Compositae paleopolyploidy is also in the ancestry of the Calyceraceae. Our phylogenomic analyses uncovered evidence for a successive second round of genome duplication among all sampled Compositae except Barnadesia.

Conclusions: Our analyses of new samples with new tools provide a revised view of paleopolyploidy in the Compositae. Together with results from a high density Lactuca linkage map, our results suggest that the Compositae and Calyceraceae have a common paleotetraploid ancestor and that most Compositae are descendants of a paleohexaploid. Although paleohexaploids have been previously identified, this is the first example where the paleotetraploid and paleohexaploid lineages have survived over tens of millions of years. The complex polyploidy in the ancestry of the Compositae and Calyceraceae represents a unique opportunity to study the long-term evolutionary fates and consequences of different ploidal levels.

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.1600113DOI Listing

Publication Analysis

Top Keywords

compositae
9
compositae asteraceae
8
descendants paleohexaploid
8
paleotetraploid ancestor
8
compositae calyceraceae
8
asteraceae descendants
4
paleohexaploid share
4
share paleotetraploid
4
calyceraceae
4
ancestor calyceraceae
4

Similar Publications

Dodder (Cuscuta spp.), particularly the species Cuscuta chinensis, is a parasitic weed known for its ability to infest a broad spectrum of plant species, thereby significantly affecting the stability and functionality of native ecosystems (Zhang, Xu et al. 2021).

View Article and Find Full Text PDF

Artemisinin's molecular symphony: illuminating pathways for cancer therapy.

Mol Biol Rep

December 2024

Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India.

Artemisinin (ART), a sesquiterpene lactone derived from the sweet wormwood plant (Artemisia annua), exhibits potent anti-malarial and anti-microbial properties, with emerging evidence suggesting its anticancer potential. This review delves into the molecular intricacies underlying ART's anticancer effects, elucidating its modulation of cell signaling pathways, induction of apoptosis and autophagy, and inhibition of angiogenesis crucial for cancer progression. Additionally, the review highlights ART's impact on oxidative stress and DNA damage within cancer cells, along with its potential synergistic effects with conventional cancer drugs to mitigate side effects.

View Article and Find Full Text PDF

A better understanding of secondary metabolites biosynthesis requires comprehensive research at the molecular level. Although the medicinal importance of secondary metabolites extracted from Arnica spp. has been well documented, the very plants themselves have been poorly studied.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the harmful effects of the pesticide etoxazole on the plant Allium cepa (onion) and explores the protective role of Achillea millefolium (yarrow) extract against this toxicity.
  • The research showed that etoxazole exposure significantly reduced growth metrics (like rooting percentage and root length) and increased harmful cellular changes, including chromosomal abnormalities.
  • Molecular docking results indicated that etoxazole directly interacts with DNA and key proteins, while A. millefolium extract, rich in phenolic compounds, may mitigate some of the toxic effects caused by the pesticide.
View Article and Find Full Text PDF

Managed honeybees and soil nitrogen availability interactively modulate sunflower production in intensive agricultural landscapes of China.

J Econ Entomol

December 2024

Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China.

Insects provide important pollination services for cops. While land use intensification has resulted in steep declines of wild pollinator diversity across agricultural landscapes, releasing managed honeybees has been proposed as a countermeasure. However, it remains uncertain whether managed honeybees can close the pollination gap of sunflower (Helianthus annuus L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!