Genetic studies in humans or in vivo studies using animals have shown that kisspeptin released from the hypothalamus controls secretion of gonadotropin-releasing hormone (GnRH) from GnRH neurons, and subsequently GnRH induces gonadotropin secretion from the anterior pituitary. Kisspeptin did not stimulate GnRH expression in the GnRH-producing cell line GT1-7. Thus, we cultured GnRH and kisspeptin neurons from whole fetal rat brain and examined the regulation of GnRH and kisspeptin. Expression of GnRH messenger RNA (mRNA) was unchanged by estradiol (E2) treatment in these primary cultures. In contrast, kisspeptin mRNA expression was increased 2.00 ± 0.23-fold by E2 treatment. When these cultures were stimulated by kisspeptin-10, GnRH mRNA was significantly increased up to 1.51 ± 0.35-fold. Expression of GnRH mRNA was also stimulated 1.84 ± 0.33-fold by GnRH itself. Interestingly, kisspeptin mRNA was significantly increased up to 2.43 ± 0.40-fold by kisspeptin alone. In addition, kisspeptin mRNA expression was significantly increased by stimulation with GnRH (1.46 ± 0.21-fold). Our observations demonstrated that kisspeptin, but not GnRH, was upregulated by E2 and that kisspeptin stimulates GnRH mRNA expression in primary cultures of whole fetal rat brain. Furthermore, GnRH and kisspeptin stimulate their own neurons to produce GnRH or kisspeptin, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1933719116653679 | DOI Listing |
Physiol Rev
January 2025
Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.
Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which co-express NKB, regulate the activity of gonadotropin releasing hormone (GnRH) neurons, and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland.
This article presents a narrative review that explores the potential link between kisspeptin-a key regulator of the hypothalamic-pituitary-gonadal axis-and the pathogenesis of endometriosis. Kisspeptin plays a significant role in regulating reproductive functions by modulating the release of gonadotropin-releasing hormone (GnRH), which in turn stimulates the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Recent studies suggest that kisspeptin may also impact peripheral reproductive tissues and influence inflammatory processes involved in the development of endometriosis.
View Article and Find Full Text PDFElife
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
J Neurosci
January 2025
Laboratory of Reproductive Neurobiology, Hun-Ren Institute of Experimental Medicine, Budapest, 1083 Hungary;
While hypothalamic kisspeptin (KP) neurons play well-established roles in the estrogen-dependent regulation of reproduction, little is known about extrahypothalamic KP-producing (KP) neurons of the lateral septum. As established previously, expression in this region is low and regulated by estrogen receptor- and GABA receptor-dependent mechanisms. Our present experiments on knock-in mice revealed that transgene expression in the LS begins at P33-36 in females and P40-45 in males and is stimulated by estrogen receptor signaling.
View Article and Find Full Text PDFMetabolism
December 2024
Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
Female reproduction is highly sensitive to body energy stores; persistent energy deficit, as seen in anorexia or strenuous exercise, is known to suppress ovulation via ill-defined mechanisms. We report herein that hypothalamic SIRT1, a key component of the epigenetic machinery that links nutritional status and puberty onset via modulation of Kiss1, plays a critical role in the control of the preovulatory surge of gonadotropins, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!