Characterization of the complete mitochondrial genome of Cynoglossus gracilis and a comparative analysis with other Cynoglossinae fishes.

Gene

Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China. Electronic address:

Published: October 2016

Mitochondrial genomes can provide basic information for phylogenetic analysis and evolutionary studies. We present here the mitochondrial genome of Cynoglossus gracilis, which is 16,565bp in length. Numerous distinct regions were identified, including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, a light-strand replication origin, and a control region. Interestingly, we detected rearrangement of genes in C. gracilis, including a control region translocation, tRNA(Gln) gene inversion, and tRNA(Ile) gene shuffling. Additionally, a phylogenetic analysis based on the nucleotide sequences of the 13 PCGs using maximum likelihood and Bayesian inference methods reveals that C. gracilis is closely related to Cynoglossus semilaevis. This study provides important mitogenomic data for analyzing phylogenetic relationships in the Cynoglossinae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2016.06.023DOI Listing

Publication Analysis

Top Keywords

mitochondrial genome
8
genome cynoglossus
8
cynoglossus gracilis
8
phylogenetic analysis
8
control region
8
characterization complete
4
complete mitochondrial
4
gracilis
4
gracilis comparative
4
comparative analysis
4

Similar Publications

Alzheimer's disease (AD) is the most common neurodegenerative disorder, accounting for approximately 70% of dementia cases worldwide. Patients gradually exhibit cognitive decline, such as memory loss, aphasia, and changes in personality and behavior. Research has shown that mitochondrial dysfunction plays a critical role in the onset and progression of AD.

View Article and Find Full Text PDF

Mitochondrial genome diversity drives heterogeneity in HCC.

Hepatology

November 2024

Division of Digestive and Liver Diseases, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

View Article and Find Full Text PDF

Probiotic Limosilactobacillus reuteri DSM 17938 Alleviates Acute Liver Injury by Activating the AMPK Signaling via Gut Microbiota-Derived Propionate.

Probiotics Antimicrob Proteins

January 2025

Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Limosilactobacillus reuteri DSM 17938 (L. reuteri DSM 17938) was one of the most widely used probiotics in humans for gastrointestinal disorders, but few studies have investigated its role in drug-induced liver injury (DILI). Here, we evaluated the efficacy of L.

View Article and Find Full Text PDF

Z-DNA at the crossroads: untangling its role in genome dynamics.

Trends Biochem Sci

January 2025

Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan. Electronic address:

DNA can fold into noncanonical left-handed Z-DNA conformation beyond the right-handed B-DNA. While its crystal structure was discovered nearly four decades ago, it was predominantly considered a structural curiosity. Recent evidence suggests that Z-DNA formation occurs in nuclear and mitochondrial DNA (mtDNA), with significant biological implications.

View Article and Find Full Text PDF

Generation of induced pluripotent stem cell line ISMMSi060-A from a patient with combined oxidative phosphorylation deficiency 25.

Stem Cell Res

January 2025

Division of Genetics and Metabolism - Department of Pediatrics, Center of Human Genomics and Precision Medicine, University of Wisconsin - School of Medicine and Public Health, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:

We have described a novel mitochondrial disorder caused by biallelic pathogenic variants in the methionyl-tRNA synthetase 2 gene (MARS2), now termed Combined oxidative phosphorylation deficiency 25 (COXPD25). This study focuses on the generation and characterization of induced pluripotent stem cells (iPSCs) from fibroblasts of a patient with COXPD25. The resulting iPSC line ISMMSi060-A, carries the compound heterozygous variants c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!