We recently reported that propofol depressed facial stimulation-evoked gamma-aminobutyric acid (GABA) transmission at cerebellar molecular layer interneuron-Purkinje cell (PC) synapses in mice in vivo, but facilitated excitatory parallel fiber inputs onto PCs. Here, we examine the effects of propofol on cerebellar granule cell layer (GCL) responses to facial stimulation in urethane-anesthetized mice, using electrophysiological and pharmacological methods. Cerebellar surface perfusion of propofol (50-1000μM) facilitated field potentials evoked in the cerebellar GCL by air-puff stimulation of the ipsilateral whisker pad, shown by increases in the half-width and area under the curve (AUC) of the stimulus onset response (Ron). Propofol also significantly increased the amplitude of the stimulus offset response (Roff) and Roff/Ron ratio. The propofol-induced increase in Ron AUC was dose-dependent, with a 50% effective concentration (EC50) of 242.4µM. Application of the GABAA receptor antagonist gabazine (20μM) significantly increased the amplitude, half-width, rise tau and AUC of Ron, but these parameters were further increased by additional application of propofol (300µM). Notably, application of the N-methyl-d-aspartate (NMDA) receptor blocker D-APV (250µM) significantly attenuated the half-width and AUC of Ron and the amplitude of Roff, without significantly changing the amplitude of Ron. These results indicate that propofol enhanced facial stimulation-evoked responses in the cerebellar GCL via NMDA receptor activation, which resulted in the facilitation of excitatory parallel fiber inputs onto cerebellar PCs in mice in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2016.05.027 | DOI Listing |
Clin Neurophysiol
November 2024
Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy.
Objective: We assessed the Transcranial Electrical Stimulation (TES)-induced Corticobulbar-Motor Evoked Potentials (Cb-MEPs) evoked from Orbicularis Oculi (Oc) and Orbicularis Oris (Or) muscles with FCC5h/FCC6h-Mz, C3/C4-Cz and C5/C6/-Cz stimulation, during IntraOperative NeuroMonitoring (IONM) in 30 patients who underwent skull-base surgery.
Methods: before (T0) and after (T1) the surgery, we compared the peak-to-peak amplitudes of Cb-MEPs obtained from TES with C3/C4-Cz, C5/C6-Cz and FCC5h/FCC6h-Mz. Then, we compared the response category (present, absent and peripheral) related to different montages.
Transl Psychiatry
July 2024
Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China.
Valproic acid (VPA) is one of the most effective antiepileptic drugs, and exposing animals to VPA during gestation has been used as a model for autism spectrum disorder (ASD). Numerous studies have shown that impaired synaptic transmission in the cerebellar cortical circuits is one of the reasons for the social deficits and repetitive behavior seen in ASD. In this study, we investigated the effect of VPA exposure during pregnancy on tactile stimulation-evoked cerebellar mossy fiber-granule cell (MF-GC) synaptic transmission in mice anesthetized with urethane.
View Article and Find Full Text PDFNeuroreport
February 2024
Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, China.
Sci Rep
September 2023
Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, 132013, Jilin, China.
The noradrenergic fibers of the locus coeruleus, together with mossy fibers and climbing fibers, comprise the three types of cerebellar afferents that modulate the cerebellar neuronal circuit. We previously demonstrated that noradrenaline (NA) modulated synaptic transmission in the mouse cerebellar cortex via adrenergic receptors (ARs). In the present study, we investigated the effect of NA on facial stimulation-evoked cerebellar molecular layer interneuron (MLI)-Purkinje cell (PC) synaptic transmission in urethane-anesthetized mice using an in vivo cell-attached recording technique and a pharmacological method.
View Article and Find Full Text PDFNature
May 2023
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA.
Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations, despite evidence for concentric functional zones and maps of complex actions. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action and physiological control, arousal, errors and pain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!