Objectives/hypothesis: To obtain biological insight into keloid pathogenesis and treatment using pathway analysis of genome-wide differentially methylated gene profiles between keloid and normal skin.
Study Design: Prospective cohort.
Methods: Genome-wide profiling was previously done, with institutional review board approval, on six fresh keloid and six fresh normal skin tissue samples, using the Infinium HumanMethylation450 BeadChip kit. Statistically significant differentially methylated cytosine-phosphodiester bond-guanines (CpGs, n = 197) between keloid and normal tissue mapped to 152 genes. These genes were uploaded into Ingenuity Pathway Analysis (IPA) software to identify biological functions or regulatory networks interacting. The pathways (or "network") with an enrichment probability value ≤ .01 were subjected to a heuristic filter of keywords associated with keloid pathogenesis.
Results: Of the 197 CpGs, 191 were found in the IPA database and mapped to 152 unique genes. The top 10 hypermethylated genes were ACTR3C, LRRC61, PAQR4, C1orf109, SLCO2B1, CMKLR1, AHDC1, FYCO1, CCDC34, and CACNB2. The top 10 hypomethylated genes were GALNT3, SCML4, PPP1R13L, ANKRD11, WIPF1, MX2, IFFO1, DENND1C, CFH, and GHDC. IPA identified nine pathways with enrichment probability values ≤ .01, of which five (histidine degradation V1, phospholipase C signaling, colorectal cancer metastasis signaling, P2Y purinergic receptor signaling, and Gαi signaling) were associated with keloid keywords and contained "keloid genes" (P < .05).
Conclusions: Genes differentially methylated between keloid and normal skin reside in known bionetwork pathways involved in critical biological functioning and signaling events in the cell. This information could be used to refine screening processes for biological significance to better understand keloid pathogenesis and to develop molecular-targeted therapy.
Level Of Evidence: NA Laryngoscope, 127:70-78, 2017.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lary.26063 | DOI Listing |
Heliyon
January 2025
Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Xinghualing Area, 030000, Taiyuan, China.
Objectives: N7-methylguanosine (m7G) modification is closely related to the occurrence of human diseases, but its roles in sepsis remain unclear. This study aimed to explore the patterns of lethality-related m7G regulatory factor-mediated RNA methylation modification and immune microenvironment regulatory features in sepsis.
Methods: Three sepsis-related datasets (E-MTAB-4421 and E-MTAB-4451 as training sets and GSE185263 as a validation set) were collected, and differentially expressed m7G-related genes were analyzed between survivors and non-survivors.
Scand J Med Sci Sports
January 2025
University School of Health and Sport, University of Girona, Girona, Spain.
Physical exercise has been shown to induce epigenetic modifications with various health implications, directly affect DNA methylation (DNAm), as well as reverse the epigenetic age. Hence, we aimed to identify differential methylation changes and assess the epigenetic age in the saliva of 7-9-year-old school children following a 3-month integrated neuromuscular training (INT), as well as to explore if any of the methylation changes are in core genes. Core genes are defined as genes of high relevance and essential importance within the human genome.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Embryo-uterine interaction during embryo implantation depends on the coordinated expression of numerous genes in the receptive endometrium. While DNA methylation is known to play a significant role in controlling gene expression, specific molecular mechanisms underlying this regulatory event remain elusive in early porcine pregnancy. Here, we investigated the genome-wide DNA methylation landscape in the Yorkshire and Meishan pig's endometrium.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
We have developed the regionalpcs method, an approach for summarizing gene-level methylation. regionalpcs addresses the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease. In contrast to averaging, regionalpcs uses principal components analysis to capture complex methylation patterns across gene regions.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!