In the present work, copper nanoparticles (CuNPs) were in situ generated in cellulose matrix using Ocimum sanctum leaf extract as a reducing agent and aq. CuSO4 solution by diffusion process. Some CuNPs were also formed outside the film in the solution which were separated and viewed by Transmission electron microscope and Scanning electron microscope (SEM). The composite films showed good antibacterial activity against Escherichia coli bacteria when the CuNPs were generated using higher concentrated aq. CuSO4 solutions. The cellulose, matrix and the composite films were characterized by Fourier transform infrared spectroscopic, X-ray diffraction, thermogravimetric analysis and SEM techniques. The tensile strength of the composite films was lower than that of the matrix but still higher than the conventional polymers like polyethylene and polypropylene used for packaging applications. These biodegradable composite films can be considered for packaging and medical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.04.121DOI Listing

Publication Analysis

Top Keywords

composite films
16
situ generated
8
copper nanoparticles
8
leaf extract
8
cellulose matrix
8
electron microscope
8
preparation cellulose
4
cellulose composites
4
composites situ
4
generated copper
4

Similar Publications

In this study, composite films were developed by encapsulating cassia oil (CO) with β-cyclodextrin through a microencapsulation technique and incorporating it into a chitosan (CS), polyvinyl alcohol (PVA) and glycerol matrix. The primary objective of the film was to inhibit bacterial growth on the surface of fresh bananas and extend their shelf life. Characterization methods were employed to evaluate the physical properties and functionality of the composite films.

View Article and Find Full Text PDF

High performance humidity sensor based on a graphene oxide-chitosan composite.

Phys Chem Chem Phys

January 2025

Temperature and Humidity Metrology, CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi, 110012, India.

In this study, we have proposed an advanced humidity sensor based on a composite of chitosan (CS) and graphene oxide (GO), prepared by the drop casting method. Graphene oxide-chitosan (GO-CS) films with varying volumetric ratios, along with pure GO and CS films, were prepared and extensively characterized using XRD, Raman, FTIR, SEM, XPS, and water contact angle to study their structural and morphological properties. Comparative analysis of humidity sensing parameters of all prepared films revealed that the film with a volumetric ratio of 4 : 1 (GOCS-2) performs best among all of them, which is attributed to the synergistic interaction between GO and CS.

View Article and Find Full Text PDF

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

Coaxial Direct Ink Writing of Cholesteric Liquid Crystal Elastomers in 3D Architectures.

Adv Mater

January 2025

Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.

Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!