Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silver nanoparticles (AgNPs) are widely used worldwide, most likely leading to their release into the environment and a subsequent increase of environmental concentrations. Studies of their deleterious effects on organisms is crucial to understand their environmental impacts. The freshwater snail Physa acuta was chosen to evaluate the potential deleterious effects of AgNPs and their counterpart AgNO , through water-only exposures. The toxicity of AgNPs is greatly influenced by medium composition. Thus, 2 media were tested: artificial pond water (APW) and modified APW (adapted by removing calcium chloride). Acute tests (96 h) were performed with juvenile and adult snails in both media to assess lethality, and egg mass chronic tests were conducted with APW medium only to assess embryo viability and mortality, carried out until 90% hatching success was reached in the control. Acute toxicity increased with decreasing shell length for both silver forms (ion and nanoparticle); that is, juveniles were more sensitive than adults. Different test media led to dissimilar median lethal concentrations, with chloride playing an important role in toxicity, most likely by complexation with silver ions, which would reduce the bioavailability, uptake, and toxicity of silver. Chronic tests showed that hatching success was more sensitive to silver in the ionic form than in the particulate form. Different forms of silver, exposure media, and life cycle stages led to different patterns of toxicity, highlighting an impairment in the snails' life cycle. Environ Toxicol Chem 2017;36:243-253. © 2016 SETAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.3532 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!