Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Micrometer-sized hierarchical Sn3 O2 (OH)2 octahedra, which are self-assembled one inside the other, resembling "Russian doll" organization, have been obtained by a metalorganic approach. This synthesis is based on the controlled hydrolysis of [Sn(NMe2 )2 ]2 in the presence of an alkylamine ligand in an organic solvent (THF). The water content of the medium proved to be a key parameter for the formation of these multi-walled octahedra. The resultant structures have been used as gas-sensitive layers on micromachined silicon devices. During in situ heating, Sn3 O2 (OH)2 is oxidized to SnO2 while retaining the initial morphology. The sensors present outstanding dynamic responses at very low CO concentrations (7 % and 67 % resistance variation to 0.25 and 20 ppm CO, respectively, at an operating temperature of 500 °C). This superior gas-sensing performance is closely related to the unique microstructure of the SnO2 multi-walled octahedra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201600650 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!