A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SnO2 "Russian Doll" Octahedra Prepared by Metalorganic Synthesis: A New Structure for Sub-ppm CO Detection. | LitMetric

SnO2 "Russian Doll" Octahedra Prepared by Metalorganic Synthesis: A New Structure for Sub-ppm CO Detection.

Chemistry

Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France.

Published: July 2016

Micrometer-sized hierarchical Sn3 O2 (OH)2 octahedra, which are self-assembled one inside the other, resembling "Russian doll" organization, have been obtained by a metalorganic approach. This synthesis is based on the controlled hydrolysis of [Sn(NMe2 )2 ]2 in the presence of an alkylamine ligand in an organic solvent (THF). The water content of the medium proved to be a key parameter for the formation of these multi-walled octahedra. The resultant structures have been used as gas-sensitive layers on micromachined silicon devices. During in situ heating, Sn3 O2 (OH)2 is oxidized to SnO2 while retaining the initial morphology. The sensors present outstanding dynamic responses at very low CO concentrations (7 % and 67 % resistance variation to 0.25 and 20 ppm CO, respectively, at an operating temperature of 500 °C). This superior gas-sensing performance is closely related to the unique microstructure of the SnO2 multi-walled octahedra.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201600650DOI Listing

Publication Analysis

Top Keywords

"russian doll"
8
sn3 oh2
8
multi-walled octahedra
8
sno2 "russian
4
octahedra
4
doll" octahedra
4
octahedra prepared
4
prepared metalorganic
4
metalorganic synthesis
4
synthesis structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!