Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2016.06.007 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
Polyphenols, natural compounds abundant in phenolic structures, have received widespread attention due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable for biomedical applications. However, the green synthesis of polyphenol-based materials with economical and environmentally friendly strategies is of great significance. In this study, a multifunctional wound dressing was achieved by introducing polyphenol-based materials of copper phosphate-tannic acid with a flower-like structure (Cu-TA NFs), which show the reactive oxygen species scavenging performance.
View Article and Find Full Text PDFLangmuir
January 2025
Perm State University, 15 Bukirev strasse, Perm 614068, Russia.
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Thyroid hormones (TH) are major regulators of cell differentiation, growth, and metabolic rate. TH synthesis in the thyroid gland requires high amounts of HO to oxidize iodide for the iodination of thyroglobulin (TG). Retinol Saturase (RetSat) is an oxidoreductase implicated in dihydroretinol formation and cellular sensitivity toward peroxides and ferroptosis.
View Article and Find Full Text PDFJ Artif Organs
January 2025
Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.
Using autologous orthotopic liver transplantation (AOLT) model in rats, the effect of lipid reactive oxygen species (L-ROS) inhibitor Ferrostain-1 on ferroptosis signal pathway was observed to determine whether ferroptosis occurred in rat liver injury after cold ischemia-reperfusion (I/R). Thirty-two healthy adult SPF male SD rats, 8 ~ 10 weeks old, weight 240 ~ 260 g, were divided into four groups by the method of random number table (n = 8): sham group, I/R group, I/R + Fer-1 group, I/R + DFO group. In the I/R + Fer-1 group, ferristatin-1(5 mg /kg) was intraperitoneally injected 30 min before surgery; in the I/R + DFO group, DFO 100 mg/kg was injected intraperitoneally 1 h before operation and 12 h after operation.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!