North West Pakistan (NWP) is characterized by four eco-zones: Northern Montane Region, North Western Hills, Submontane Region and Indus Plains. Present study identified 1037 cases of traumatic myiasis in the region during 2012-2015. Screw worm larvae were classified as 12 species: Chrysomya bezziana (Villeneuve), Chryomya megacephala (Fabricius), Chrysomya rufifacies (Macquart), Lucilia cuprina (Wiedemann), Lucilia sericata (Meigen), Lucilia illustris (Meigen), Lucilia porphyrina (Walker), Hemipyrellia ligguriens (Wiedemann), Calliphora vicina (Robineau-Desvoidy), Wohlfahrtia magnifica (Schiner), Sarcophaga crassipalpalis (Macquart), Sarchophaga species. Among these C. bezziana, L. cuprina and W. magnifica with approximately 882 case reports were the principal agents of traumatic myiasis. The species W. magnifica is a first report from Pakistan. In order to investigate spatial distribution of these dominant species we used MaxEnt niche model. Our results revealed a well-established occurrence of C. bezziana and L. cuprina in the four eco-regions while W. magnifica is currently contained in the Submontane Region. Several hot spot areas of infestation were detected all characterized by high human population density showing synanthropic nature of these species. Wohlfahrtia magnifica was excluded from Northern Montane Region with severe winters and Southern Indus Plains with harsh summers revealing that invasive species are initially sensitive to extreme of temperatures. Presence of L. cuprina in the wet areas of North Humid Belt (Maximum annual precipitation: 1641mm) depicted a moisture preference of the species. In perspective of changing climate and future predictions of severe events such as droughts and flooding in NWP, W. magnifica can potentially alter the species composition. Considering these findings in an eco-geographically dynamic region of Pakistan we predict that two factors (1) Growing human population (2) Climatic conditions, equally contribute to range shift of synanthropic species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actatropica.2016.06.015 | DOI Listing |
Sci Total Environ
January 2025
Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA.
We present the results of a 1-year study that quantified salt levels in stormwater, soils, and plant tissues from 14 stormwater detention basins across Northern VA in an above-average snow year. We characterize (1) the level of salt stress plants experience, (2) the extent to which current plant communities feature salt tolerant species, and (3) the capacity of these species to phytoremediate soils and reduce the impacts of deicer and anti-icer use. Our results suggest that detention basin vegetation experience a range of salt stress levels that depend on drainage area type (roads: moderate to high > parking lots: low to moderate > pervious areas: none).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:
Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:
Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:
Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!