Epidermal lamellar bodies (LBs) are organelles that secrete their content, mainly lipids and enzymes, into the intercorneocyte space of the stratum corneum (SC) to form the lamellar structure of this tissue. Thus, LBs have a key role in permeability and the microbial cutaneous barrier. In this work, a complex lipid system that mimics the morphology, structure and composition of LBs has been designed. To evaluate the effect of this system on delipidized SC, in vitro experiments using porcine skin were performed. The microstructure of SC samples (native, delipidized and, delipidized after treatment) was evaluated by freeze substitution transmission electron microscopy (FSTEM) and grazing-incidence small-angle X-ray scattering (GISAXS). Delipidized SC samples showed no evidence of lipid lamellae after extraction with organic solvents. However, after treatment with the LB mimetic system, new lamellar structures between corneocytes were detected by FSTEM, and high intensity peaks and reflections were found in the GISAXS pattern. These results demonstrate a strong effect of the treatment in repairing part of the lipid lamellar structure of the SC. Accordingly, future research could extend the use of this system to repair skin barrier dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.06.033 | DOI Listing |
Sci Rep
January 2025
Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States. Electronic address:
Intracortical microelectrodes (IMEs) are essential for neural signal acquisition in neuroscience and brain-machine interface (BMI) systems, aiding patients with neurological disorders, paralysis, and amputations. However, IMEs often fail to maintain robust signal quality over time, partly due to neuroinflammation caused by vascular damage during insertion. Platelet-inspired nanoparticles (PIN), which possess injury-targeting functions, mimic the adhesion and aggregation of active platelets through conjugated collagen-binding peptides (CBP), von Willebrand Factor-binding peptides (VBP), and fibrinogen-mimetic peptides (FMP).
View Article and Find Full Text PDFDrug Deliv
December 2025
Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.
View Article and Find Full Text PDFPolym Chem
August 2024
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
While the conformational ensembles of disordered peptides and peptidomimetics are complex and challenging to characterize, they are a critical component in the paradigm connecting macromolecule sequence, structure, and function. In molecules that do not adopt a single predominant conformation, the conformational ensemble contains rich structural information that, if accessible, can provide a fundamental understanding related to desirable functions such as cell penetration of a therapeutic or the generation of tunable enzyme-mimetic architecture. To address the fundamental challenge of describing broad conformational ensembles, we developed a model system of peptidomimetics comprised of polar glycine and hydrophobic -butylglycine to characterize using a suite of analytical techniques.
View Article and Find Full Text PDFGlia
January 2025
Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, USA.
Microglia play a critical role in maintaining central nervous system (CNS) homeostasis and display remarkable plasticity in their response to inflammatory stimuli. However, the specific signaling profiles that microglia adopt during such challenges remain incompletely understood. Traditional transcriptomic approaches provide valuable insights, but fail to capture dynamic post-translational changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!