Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To describe the chromosomal alterations in patients with mental retardation (MR) using G-banding karyotype analysis.
Method: A retrospective study of the results G-banding karyotype analysis of 369 patients investigated for MR was performed. Based on the structural rearrangements found, the authors searched all chromosomal regions related with breakpoints, and these were compared with the literature on MR and databases.
Results: 338 (91.6%) normal cases, and 31 (8.4%) with some type of chromosomal abnormality were identified. Among the altered cases, 21 patients (67.8%) were identified with structural chromosomal alterations, nine (29%) with numerical alterations, and one (3.2%) with numerical and structural alterations.
Conclusion: Structural chromosomal abnormalities were observed more frequently in this study. G-banding karyotyping contributes to the investigation of the causes of MR, showing that this technique can be useful for initial screening of patients. However, higher resolution techniques such as array based comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MPLA) can detect submicroscopic alterations commonly associated with MR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/1806-9282.62.03.262 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!