A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The virtual esophagus: investigating esophageal functions in silico. | LitMetric

The virtual esophagus: investigating esophageal functions in silico.

Ann N Y Acad Sci

Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.

Published: September 2016

Esophageal and gastroesophageal junction (GEJ) diseases are highly prevalent worldwide and are a significant socioeconomic burden. Recently, applications of multiscale mathematical models of the upper gastrointestinal tract have gained attention. These in silico investigations can contribute to the development of a virtual esophagus modeling framework as part of the larger GIome and Physiome initiatives. There are also other modeling investigations that have potential screening and treatment applications. These models incorporate detailed anatomical models of the esophagus and GEJ, tissue biomechanical properties and bolus transport, sensory properties, and, potentially, bioelectrical models of the neural and myogenic pathways of esophageal and GEJ functions. A next step is to improve the integration between the different components of the virtual esophagus, encoding standards, and simulation environments to perform more realistic simulations of normal and pathophysiological functions. Ultimately, the models will be validated and will provide predictive evaluations of the effects of novel endoscopic, surgical, and pharmaceutical treatment options and will facilitate the clinical translation of these treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.13089DOI Listing

Publication Analysis

Top Keywords

virtual esophagus
12
models
5
esophagus investigating
4
investigating esophageal
4
esophageal functions
4
functions silico
4
silico esophageal
4
esophageal gastroesophageal
4
gastroesophageal junction
4
junction gej
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!