Leaching of iodide (I(-)) and iodate (IO3(-)) anions from synthetic layered double hydroxide materials.

J Colloid Interface Sci

Discipline of Nanotechnology and Molecular Science, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia. Electronic address:

Published: September 2016

Several studies have previously demonstrated that layered double hydroxides (LDHs) show considerable potential for the adsorption of radioiodine from aqueous solution; however, few studies have demonstrated that these materials are able to store radioactive (131)I for an acceptable period. The leaching of iodide (I(-)) and iodate (IO3(-)) form Mg/Al LDHs has been carried out. Contact time appeared to be a more significant variable for the leaching of iodate (IO3(-)) compared to that of iodide (I(-)). Experimental results are fitted to the pseudo second order model, suggesting that diffusion is likely to be the rate-limiting step. The presence of carbonate in the leaching solution appeared to significantly increase the leaching of iodide (I(-)) as did the presence of chloride to a lesser extent. The maximum amount of iodate (IO3(-)) leached using ultrapure water as the leaching solution was 21% of the iodate (IO3(-)) originally present. The corresponding result for iodide (I(-)) was even lower at 3%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2016.06.024DOI Listing

Publication Analysis

Top Keywords

iodate io3-
20
leaching iodide
12
iodide iodate
8
layered double
8
studies demonstrated
8
leaching solution
8
leaching
6
iodate
5
io3-
5
io3- anions
4

Similar Publications

The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.

View Article and Find Full Text PDF

Oxidative degradation of sulfamethazine by manganese oxide supported biochar activated periodate: Effect and mechanism.

Ecotoxicol Environ Saf

January 2025

State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China. Electronic address:

In this study, manganese oxide supported biochar (MBC) was used as a catalyst of periodate (PI) for the oxidative degradation of sulfonamide antibiotic sulfamethazine (SMZ). The degradation rate of 10 mg/L SMZ reached 99 % in 60 min in the MBC/PI system, and the optimal condition was pH 3.5, 0.

View Article and Find Full Text PDF

In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.

View Article and Find Full Text PDF

Enhanced iodinated disinfection byproducts formation in iodide/iodate-containing water undergoing UV-chloramine sequential disinfection: Machine learning-aided identification of reaction mechanisms.

Water Res

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China. Electronic address:

Restricted to the complex nature of dissolved organic matter (DOM) in various aquatic environments, the mechanisms of enhanced iodinated disinfection byproducts (I-DBPs) formation in water containing both I and IO (designated as I/IO in this study) during the ultraviolet (UV)-chloramine sequential disinfection process remains unclear. In this study, four machine learning (ML) models were established to predict I-DBP formation by using DOM and disinfection features as input variables. Extreme gradient boosting (XGB) algorithm outperformed the others in model development using synthetic waters and in cross-dataset generalization of surface waters.

View Article and Find Full Text PDF

Heterogenous Chemistry of IO as a Critical Step in Iodine Cycling.

J Am Chem Soc

December 2024

Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Global iodine emissions have been increasing rapidly in recent decades, further influencing the Earth's climate and human health. However, our incomplete understanding of the iodine chemical cycle, especially the fate of higher iodine oxides, introduces substantial uncertainties into atmospheric modeling. IO was previously deemed a "dead end" in iodine chemistry; however, we provide atomic-level evidence that IO can undergo rapid air-water or air-ice interfacial reactions within several picoseconds; these reactions are facilitated by prevalent chemicals on seawater such as amines and halide ions, to produce photolabile reactive iodine species such as HOI and IX (X = I, Br, and Cl).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!