Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of ultrathin block copolymer films.

J Colloid Interface Sci

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.

Published: September 2016

AI Article Synopsis

  • The study examines how copolymer composition, film thickness, and solvent vapor annealing time affect the dewetting behavior of ultrathin spin-coated PS-b-PMMA films, specifically under 20nm thick.
  • Surface analysis techniques like X-ray photoelectron spectroscopy and contact angle measurement were used to evaluate the changes in films after different annealing durations.
  • The research identifies a unique dewetting process involving the coalescence of droplets and subsequent rupture, driven by the migration of PMMA blocks to the surface, which had not been observed in spin-coated films before.

Article Abstract

Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (<20nm thick) were mainly investigated by atomic force microscopy. Surface chemical analysis of the ultrathin films annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2016.06.017DOI Listing

Publication Analysis

Top Keywords

effects copolymer
8
copolymer composition
8
composition film
8
film thickness
8
thickness solvent
8
solvent vapor
8
vapor annealing
8
annealing time
8
time dewetting
8
dewetting ultrathin
4

Similar Publications

Advances of Stimuli-Responsive Amphiphilic Copolymer Micelles in Tumor Therapy.

Int J Nanomedicine

January 2025

Department of pharmacy, west china hospital,  Sichuan University, Chengdu, 610041, People's Republic of China.

Amphiphilic copolymers are composed of both hydrophilic and hydrophobic chains, which can self-assemble into polymeric micelles in aqueous solution via the hydrophilic/hydrophobic interactions. Due to their unique properties, polymeric micelles have been widely used as drug carriers. Poorly soluble drugs can be covalently attached to polymer chains or non-covalently incorporated in the micelles, with improved pharmacokinetic profiles and enhanced efficacy.

View Article and Find Full Text PDF

ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.

View Article and Find Full Text PDF

Benchtop Machining of Self-Standing Alumina Doughs for Low-Number Fabrication and Prototyping.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.

Cold isostatic pressing, gel casting, and protein coagulation are the most common techniques to produce green bodies prior to computer numerical control (CNC)-based machining for the near-net-scale shaping of ceramics. These methods typically involve various additives and entail several steps to create a green body that is capable of withstanding machining forces. Here, utilizing a single additive, we first introduced a facile benchtop method to generate self-standing, malleable doughs of alumina in under 2 min.

View Article and Find Full Text PDF

This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.

View Article and Find Full Text PDF

The chemical mechanical polishing/planarization (CMP) is essential for achieving the desired surface quality and planarity required for subsequent layers and processing steps. However, the aggregation of slurry particles caused by abrasive materials can lead to scratches, defects, increased surface roughness, degradation the quality and durability of the finished surface after milling processes during the CMP process. In this study, ceria slurry was prepared using polymer dispersant with zinc salt of ethylene acrylic acid (EAA) copolymer at different contents of 5, 6, and 7 wt% (denoted as D5, D6, and D7) to minimize particle aggregation commonly observed in CMP slurries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!