A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Degradation of phthalate esters and acetaminophen in river sediments using the electrokinetic process integrated with a novel Fenton-like process catalyzed by nanoscale schwertmannite. | LitMetric

The main objective of this study was to develop and establish an in situ remediation technology coupling nano-schwertmannite/H2O2 process and electrokinetic (EK) process for the removal of phthalates (PAEs) and acetaminophen in river sediments. Test results are given as follows: (1) injection of nano-schwertmannite slurry and H2O2 (collectively, "novel oxidant") into the anode reservoir would yield ·OH radicals that then will be diffused into the sediment compartment and further transported by the electroosmotic flow and/or electrophoresis from the anode end toward the cathode to degrade PAEs and pharmaceuticals in the sediment if any; (2) an electric potential gradient of 1.5 V cm(-1) would help the removal of PAEs and acetaminophen in the blank test, which no "novel oxidants" was added to the remediation system; (3) the practice of electrode polarity reversal would maintain neutral pH for sediment after remediation; (4) injection of equally divided dose of 10 mL novel oxidant into the anode reservoir and four injection ports on the top of sediment chamber would further enhance the removal efficiency; and (5) an extension of treatment time from 14 d to 28 d is beneficial to the removal efficiency as expected. In comparison, the remediation performance obtained by the EK-assisted nano-SHM/H2O2 oxidation process is superior to that of the batch degradation test, but is comparable with other EK integrated technologies for the treatment of same contaminants. Thus, it is expected that the EK-assisted nano-SHM/H2O2 oxidation process is a viable technology for the removal of phthalate esters and pharmaceuticals from river sediments in large-scale operations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.04.119DOI Listing

Publication Analysis

Top Keywords

river sediments
12
phthalate esters
8
acetaminophen river
8
electrokinetic process
8
paes acetaminophen
8
anode reservoir
8
removal efficiency
8
ek-assisted nano-shm/h2o2
8
nano-shm/h2o2 oxidation
8
oxidation process
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!