A novel series of sigma (σ) receptor ligands based on an alkoxyisoxazole scaffold has been designed and synthesized. Preliminary receptor binding assays identified highly potent (Ki < 1 nM) and selective σ1 ligands devoid of binding interactions with the monoamine transporters DAT, NET, and SERT. In particular, compound 53 was shown to possess significant antinociceptive activity in the mouse formalin-induced inflammation pain model when administered intraperitoneally at 40 and 80 mg/kg. Initial pharmacokinetics evaluation indicated an excellent brain exposure following oral dosing in mice, suggesting that further investigation into the use of alkoxyisoxazoles as σ1 ligands for antinociception is warranted. This study supports the notion that selective σ1 antagonism could be a useful strategy in the development of novel antipain therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.6b00571 | DOI Listing |
Stem Cells
January 2025
Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe city, Hyogo 650-0017, Japan.
Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China.
Objective: This study aims to explore the role of exosome-related genes in breast cancer (BRCA) metastasis by integrating RNA-seq and single-cell RNA-seq (scRNA-seq) data from BRCA samples and to develop a reliable prognostic model.
Methods: Initially, a comprehensive analysis was conducted on exosome-related genes from the BRCA cohort in The Cancer Genome Atlas (TCGA) database. Three prognostic genes (JUP, CAPZA1 and ARVCF) were identified through univariate Cox regression and Lasso-Cox regression analyses, and a metastasis-related risk score model was established based on these genes.
JAMA Ophthalmol
January 2025
Truhlsen Eye Center, Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha.
Importance: Randomized clinical trials have shown the safety and efficacy of faricimab as a novel vascular endothelial growth factor and angiopoietin-2 inhibitor in the treatment of neovascular age-related macular degeneration (nAMD) and macular edema of various etiologies. However, more rare adverse events may not be considered in clinical trials.
Objective: To describe 3 eyes that developed irreversible vision loss following initial mild intraocular inflammation (IOI) to faricimab.
Drugs
January 2025
Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.
Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!