Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Directly utilizing a chemical feedstock to construct valuable compounds is an attractive prospect in organic synthesis. In particular, the combination of C(sp(3) )-H activation and oxidative carbonylation involving alkanes and CO gas is a promising and efficient method to synthesize carbonyl derivatives. However, due to the high C-H bond dissociation energy and low polarity of unactivated alkanes, the carbonylation of unactivated C(sp(3) )-H bonds still remains a great challenge. In this work, we introduce a palladium-catalyzed radical oxidative alkoxycarbonylation of alkanes to prepare numerous alkyl carboxylates. Various alkanes and alcohols were compatible, generating the desired products in up to 94 % yield. Remarkably, ethane, a constituent of natural gas, could be employed as a substrate under the standard reaction conditions. Preliminary mechanistic studies revealed a probable palladium-catalyzed radical process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201602791 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!