Necroptosis is a form of regulated necrotic cell death that is mediated by receptor-interacting protein 1 (RIP1) and RIP3 kinases. Diverse receptors, including death receptors, Toll-like receptors, interferon receptors, and DAI DNA receptors are able to trigger necroptosis. The newly identified MLKL protein functions downstream of RIP1/RIP3 and is essential for the execution of necroptosis. Studies also indicate involvement of reactive oxygen species and calcium and sodium ions. Identification of the key mediators of necroptosis is critical for understanding the molecular mechanisms of the necroptotic process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905176PMC
http://dx.doi.org/10.4161/23723548.2014.960759DOI Listing

Publication Analysis

Top Keywords

receptors
5
execution ripk3-regulated
4
ripk3-regulated necrosis
4
necroptosis
4
necrosis necroptosis
4
necroptosis form
4
form regulated
4
regulated necrotic
4
necrotic cell
4
cell death
4

Similar Publications

BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories.

J Chem Inf Model

January 2025

Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States.

Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.

View Article and Find Full Text PDF

Functional evolution of thyrotropin-releasing hormone neuropeptides: Insights from an echinoderm.

Zool Res

January 2025

The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong 266003, China. E-mail:

Feeding behavior is regulated by a complex network of endogenous neuropeptides. In chordates, this role is suggested to be under the control of diverse factors including thyrotropin-releasing hormone (TRH). However, whether this regulatory activity of TRH is functionally conserved in non-chordate metazoans, and to what extent this process is underpinned by interactions of TRH with other neuropeptides such as cholecystokinin (CCK, known as a satiety signal), remain unclear.

View Article and Find Full Text PDF

Background: Clinical expressivity of the thrombophilic factor V Leiden (FVL) mutation is highly variable. Recently, we demonstrated an increased APC (activated protein C) response in asymptomatic FVL carriers compared with FVL carriers with a history of venous thromboembolism (VTE) after in vivo coagulation activation. Here, we further explored this association using a recently developed ex vivo model based on patient-specific endothelial colony-forming cells (ECFCs).

View Article and Find Full Text PDF

Background And Aims: Non-Alcoholic Steatohepatitis (NASH), a severe form of Non-Alcoholic Fatty Liver Disease (NAFLD), is characterized by inflammation and fibrosis in the liver, often progressing to cirrhosis and hepatocellular carcinoma. Despite its rising prevalence and significant disease burden, effective pharmacological treatments have been limited to lifestyle modifications and surgical interventions. Recently, resmetirom, a thyroid hormone receptor-β agonist, received FDA approval for treating NASH, offering new hope to patients.

View Article and Find Full Text PDF

Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!