12-(3,4,5-Tri-meth-oxy-phen-yl)-2,3,4,12-tetra-hydro-1H-5-oxa-tetra-phen-1-one: crystal structure and Hirshfeld surface analysis.

Acta Crystallogr E Crystallogr Commun

Research Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.

Published: June 2016

In the title compound, C26H24O5, the pyran ring has a flattened-boat con-formation, with the 1,4-related ether O and methine C atoms lying 0.1205 (18) and 0.271 (2) Å, respectively, above the least-squares plane involving the doubly bonded C atoms (r.m.s deviation = 0.0208 Å). An envelope conformation is found for the cyclo-hexene ring, with the flap atom being the middle methyl-ene C atom, lying 0.616 (2) Å out of the plane defined by the remaining atoms (r.m.s. deviation = 0.0173 Å). The fused four-ring system is approximately planar, with the dihedral angle between the least-squares planes through the cyclo-hexene and naphthyl rings being 10.78 (7)°. The tris-ubstituted benzene ring occupies a position almost perpendicular to the pyran ring [dihedral angle = 83.97 (4)°]. The most prominent feature of the packing is the formation of zigzag supra-molecular chains mediated by aryl-C-H⋯O(meth-oxy) inter-actions; chains are connected into a three-dimensional architecture by methyl-ene- and methyl-C-H⋯π inter-actions. The prevalence of C-H⋯O and C-H⋯π inter-actions is confirmed by an analysis of the Hirshfeld surface. A comparison with related structures suggests that the mol-ecular conformation of the title compound is relatively robust with respect to varying substitution patterns at the methine C atom of the pyran ring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908558PMC
http://dx.doi.org/10.1107/S2056989016007775DOI Listing

Publication Analysis

Top Keywords

pyran ring
12
hirshfeld surface
8
title compound
8
atoms rms
8
rms deviation
8
ring
5
12-345-tri-meth-oxy-phen-yl-23412-tetra-hydro-1h-5-oxa-tetra-phen-1-one crystal
4
crystal structure
4
structure hirshfeld
4
surface analysis
4

Similar Publications

Effects of catechins with different structure characteristics on the structure and properties of gluten-catechin covalent complex.

Food Res Int

February 2025

Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China. Electronic address:

Effects of catechins with different structure characteristics on the structure and properties of gluten-catechin covalent complex were investigated, and the structure-activity relationship was further explored. Catechins including epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG) could successfully covalently bind with gluten through C-N and/or C-S bonds. The physicochemical properties of covalent complex, including particle size, thermal stability, content of free amino groups, free sulfhydryl groups and disulfide bonds, were significantly affected by different catechins, and the action order was: EGCG > ECG > EGC > EC.

View Article and Find Full Text PDF

Relationship Between the Structure of the Flavone -Glycosides of Linseed ( L.) and Their Antioxidant Activity.

Molecules

December 2024

UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, IUT GB, Avenue des Facultés, Le Bailly, 80025 Amiens, France.

Flavonoids have been documented to have good antioxidant activities in vitro. In recent years, reports on the antioxidant activities of flavone glycosides, a subclass of flavonoids, have attracted great attention. Despite the wealth of information on this subject, the correlation between structure and function is not well understood.

View Article and Find Full Text PDF

The antioxidant properties of some 3-dithiocarbamic flavanones were investigated. Based on a previous study, we selected three frameworks that proved to be the most active ones. By varying the nature of the substituent at the para-position of flavanone ring , a structure-activity relationship study on radical scavenging activities was performed.

View Article and Find Full Text PDF

The current study aimed to detect the mutagenic impacts of aflatoxin B1 (AFB1), which is produced by Aspergillus group fungi, via a high-plant genotoxicity test. Different durations of treatment (3 h, 6 h, and 12 h) were used to treat the Vicia faba root tips with varying concentrations of Aflatoxin B1 (AFB1) following the approved protocol for plant assays published by the International Program on Chemical Safety (IPCS) and the World Health Organization (WHO). The data obtained indicated that AFB1 not only has the ability to induce various alterations in the process of mitosis, ranging from increasing to decreasing mitotic and phase indices but also leads to many mitotic aberrations.

View Article and Find Full Text PDF

Bicyclic polyprenylated acylphloroglucinol-related meroterpenoids as potent DRAK2 inhibitors from Hypericum patulum.

Phytochemistry

April 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Pharmacy, Fudan University, Shanghai, 201203, China. Electronic address:

As a both edible and medicinal plant, Hypericum patulum (Hypericaceae) is used as a natural herbal tea, scented tea, and folk medicine. In this study, eight undescribed bicyclic polyprenylated acylphloroglucinol-related meroterpenoids named hyperpatins A-H, along with eight known ones, were isolated from this plant. Their structures were elucidated on the basis of spectroscopic techniques, chemical method, X-ray crystallographic experiments, and electronic circular dichroism analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!