Aims: Controlling vascular integrity is expected to be a novel therapeutic target of cancers as well as cardiovascular diseases. Adrenomedullin (AM) and its receptor-modulating protein, RAMP2, have been identified as essential mediators of cardiovascular homeostasis. In this study, we used inducible vascular endothelial cell-specific RAMP2 knockout (DI-E-RAMP2(-/-)) mice to clarify the contribution made by the endogenous AM-RAMP2 system to angiogenesis and metastasis.
Methods And Results: Subcutaneously transplanted sarcoma or melanoma cells showed less growth and angiogenesis in DI-E-RAMP2(-/-) than in control mice. On the other hand, after the transplantation of B16BL6 melanoma cells into hindlimb footpads, spontaneous metastasis to the lung was enhanced in DI-E-RAMP2(-/-) mice. Early after RAMP2 gene deletion, DI-E-RAMP2(-/-) mice showed enhanced vascular permeability, endothelial-mesenchymal transition (EndMT)-like change, and systemic oedema. Within the lungs of DI-E-RAMP2(-/-) mice, pulmonary endothelial cells were deformed, and inflammatory cells infiltrated the vessel walls and expressed the chemotactic factors S100A8/9 and SAA3, which attract tumour cells and mediate the formation of a pre-metastatic niche. Conversely, the overexpression of RAMP2 suppressed tumour cell adhesion to endothelial cells, tumour metastasis, and improved survival.
Conclusion: These findings indicate that the AM-RAMP2 system regulates vascular integrity, whereas RAMP2 deletion promotes vascular permeability and EndMT-like change within primary lesions and formation of pre-metastatic niches in distant organs by destabilizing the vascular structure and inducing inflammation. Vascular integrity regulated by the AM-RAMP2 system could thus be a hopeful therapeutic target for suppressing tumour metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cvr/cvw166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!