Dietary restriction (DR) extends life span and reduces reproduction in most animals. The disposable soma hypothesis suggests that this longevity is the result of reduced investment in reproduction and increased nutrient allocation to the soma, permitting an increase in cellular maintenance. To investigate the role of nutrient allocation upon life-extending DR, tissue-specific nitrogen allocation was tracked in grasshoppers (Romalea microptera) upon a full or restricted (60% of full) diet. In addition, carbonyl (oxidized protein) assays addressed tissue maintenance. To develop a labeled diet on which grasshoppers could thrive, hydroponically grown Romaine lettuce was enriched with 15N. This allowed quantification of nitrogen allocation upon a normal or restricted diet. There was a 50% decrease in reproductive investment upon DR. At the same time, relative allocation of 15N to the ovary did not change. Most important, relative allocation was similar between restricted and full diet grasshoppers for somatic tissues (ie, mandibular and femur muscle, dried hemolymph, gut, and fat body). Carbonyl assays of muscles, hemolymph, and gut revealed an overall reduction in protein oxidation upon DR. These data suggest that DR does not alter nutrient allocation but does reduce protein oxidation, an observation that is inconsistent with the basic predictions of the disposable soma hypothesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glw094DOI Listing

Publication Analysis

Top Keywords

nutrient allocation
12
dietary restriction
8
allocation
8
somatic tissues
8
disposable soma
8
soma hypothesis
8
nitrogen allocation
8
full diet
8
diet grasshoppers
8
relative allocation
8

Similar Publications

How parental factors shape the plant embryo.

Biochem Soc Trans

January 2025

Centre for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany.

Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development.

View Article and Find Full Text PDF

Growth-tolerance tradeoffs shape the survival outcomes and ecophysiological strategies of Atlantic Forest species in the rehabilitation of mining-impacted sites.

Sci Total Environ

January 2025

Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil. Electronic address:

The initial performance of seedlings of tree species from different functional groups, regarding the growth-defense tradeoff, might determine its long-term success during the rehabilitation of mining areas. We monitored the field performance of six native tree species of the Atlantic Forest in the Fundão dam tailing that has been under rehabilitation for 35 months. Additionally, we explored the morphophysiological traits driving the superior performance of three species.

View Article and Find Full Text PDF

Microbial Carbon Use Efficiency and Growth Rates in Soil: Global Patterns and Drivers.

Glob Chang Biol

January 2025

Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany.

Carbon use efficiency (CUE) of microbial communities in soil quantifies the proportion of organic carbon (C) taken up by microorganisms that is allocated to growing microbial biomass as well as used for reparation of cell components. This C amount in microbial biomass is subsequently involved in microbial turnover, partly leading to microbial necromass formation, which can be further stabilized in soil. To unravel the underlying regulatory factors and spatial patterns of CUE on a large scale and across biomes (forests, grasslands, croplands), we evaluated 670 individual CUE data obtained by three commonly used approaches: (i) tracing of a substrate C by C (or C) incorporation into microbial biomass and respired CO (hereafter C-substrate), (ii) incorporation of O from water into DNA (O-water), and (iii) stoichiometric modelling based on the activities of enzymes responsible for C and nitrogen (N) cycles.

View Article and Find Full Text PDF

Soil salinization poses a significant ecological and environmental challenge both in China and across the globe. Plant growth-promoting rhizobacteria (PGPR) enhance plants' resilience against biotic and abiotic stresses, thereby playing a vital role in soil improvement and vegetation restoration efforts. PGPR assist plants in thriving under salt stress by modifying plant physiology, enhancing nutrient absorption, and synthesizing plant hormones.

View Article and Find Full Text PDF

Fine-tuned programming of placenta trophoblast determines optimal maternal-fetal nutrient allocation.

Curr Opin Genet Dev

January 2025

State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China. Electronic address:

Maternal health and fetal survival during pregnancy encapsulate a paradox of cooperation and competition. One particularly intriguing aspect of this paradox involves the optimal allocation of nutrients between the mother and fetus. Despite this, the precise mechanisms governing nutrient allocation remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!