Adding a new dimension to the chemistry of phosphorus and arsenic.

Phys Chem Chem Phys

Department of Physics, University of Minnesota, 116 Church St., SE, Minneapolis, Minnesota 55416, USA.

Published: June 2016

AI Article Synopsis

Article Abstract

The recently discovered phosphorenes are emerging as promising 2D materials for nanoelectronics. Novel structures and topologies can produce new properties and functionalities, and pave the way for potential new applications. For the first time, we predict two novel highly stable free-standing 2D monolayers of P and As with exotic hypercoordination motifs. This is the first hexacoordinate P and planar hexacoordinate As extended sheet. Ab initio calculations and molecular dynamics simulations demonstrate that these new Cu2X (X = P/As) materials are highly stable and are diamagnetic and metallic. Cu2P is slightly buckled without magnetism. For Cu2As, the exactly planar motif is the ground state. We observe an interesting phenomenon, i.e., buckling quenching of the magnetism in a 2D crystal. To our knowledge, this is the first example of buckling quenching of the magnetism in a 2D crystal. These results add a new dimension to the chemistry of phosphorus and arsenic.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp01860bDOI Listing

Publication Analysis

Top Keywords

dimension chemistry
8
chemistry phosphorus
8
phosphorus arsenic
8
highly stable
8
buckling quenching
8
quenching magnetism
8
magnetism crystal
8
adding dimension
4
arsenic discovered
4
discovered phosphorenes
4

Similar Publications

Extreme ultraviolet (EUV) lithography has enabled significant reductions in device dimensions but is often limited by capillary force-driven pattern collapse in conventional wet processes. Recent dry-development approaches, while promising, frequently require toxic etchants or specialized equipment, limiting their broader applicability and highlighting the need for more sustainable, cost-effective alternatives. In this study, highly reactive, etchant-free dry-developable EUV photoresists using N-heterocyclic carbene (NHC)-based metal-ligand complexes, achieving half-saturation at EUV doses of 8.

View Article and Find Full Text PDF

The design of electrically conductive textiles appears to be a promising approach to combat the existing challenge of deaths caused by severe cold climates around the globe. However, reports on the scalable fabrication of tolerant conductive textiles maintaining a low electrical resistance with an ability for unperturbed and prolonged performance are scarce. Here, a breathable and wrappable water-repellent conductive textile (water-repellent CT) with electrothermal and photothermal conversion abilities at low external voltage and in weak solar light is introduced, respectively.

View Article and Find Full Text PDF

Diabetes significantly increases the risk of serious health issues, including prolonged skin inflammation and delayed wound healing, owing to inferior glucose control and suppression of the immune system. Although traditional hydrogen (H2) therapy is slightly effective, its ability to tailor the release of H2 on the skin is limited. Accordingly, this study proposed a novel strategy for electrocatalytic H2 release under neutral conditions to promote wound healing in diabetic mice and rabbit.

View Article and Find Full Text PDF

Ultrahigh Specific Strength by Bayesian Optimization of Carbon Nanolattices.

Adv Mater

January 2025

Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.

Nanoarchitected materials are at the frontier of metamaterial design and have set the benchmark for mechanical performance in several contemporary applications. However, traditional nanoarchitected designs with conventional topologies exhibit poor stress distributions and induce premature nodal failure. Here, using multi-objective Bayesian optimization and two-photon polymerization, optimized carbon nanolattices with an exceptional specific strength of 2.

View Article and Find Full Text PDF

High performance liquid chromatography (HPLC) is a key analytical technique that is used in a number of fields. Improving the separation efficiency, stability, and universality of HPLC has been a continuing analytical-chemistry focus. In chromatographic separation, factors such as the composition and ratio of the mobile phase, the type of stationary phase, and the dimensions of the chromatographic column significantly affect the separation efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!