Human enteric neural stem cells (hENSCs) proliferate and differentiate into neurons and glial cells in response to a complex network of neurotrophic factors to form the enteric nervous system. The primary aim of this study was to determine the effect of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) on in-vitro expansion and differentiation of postnatal hENSCs-containing enteric neurosphere cells. Enteric neurosphere cells were isolated from rectal polyp specimens of 75 children (age, 1-13 years) and conditioned with bFGF, EGF, bFGF+EGF, or plain culture media. Proliferation of enteric neurosphere cells was examined using the methyl thiazolyl tetrazolium colorimetric assay over 7 days of culture. Fetal bovine serum (10%) was added to induce the differentiation of parental enteric neurosphere cells, and differentiated offspring cells were immunophenotyped against p75 neutrophin receptor (neural stem cells), peripherin (neuronal cells), and glial fibrillary acidic protein (glial cells). Combining bFGF and EGF significantly improved the proliferation of enteric neurosphere cells compared with bFGF or EGF alone (both P<0.01) throughout 7 days of culture. The addition of bFGF drove a significantly greater proportion of enteric neurosphere cells to differentiate into neuronal cells than that of EGF (P<0.01), whereas addition of EGF resulted in significantly more glial differentiation compared with addition of bFGF (P<0.01). Combining bFGF and EGF drove enteric neurosphere cells to differentiate into neuronal cells in a proportion similar to glial cells. Our results showed that the combination of bFGF and EGF significantly enhanced the proliferation and differentiation of postnatal hENSCs-containing enteric neurosphere cells in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0000000000000626 | DOI Listing |
Front Mol Neurosci
December 2024
Department of Surgery, University of Virginia, Charlottesville, VA, United States.
Introduction: Dysfunction of the enteric nervous system (ENS) is linked to a myriad of gastrointestinal (GI) disorders. Piezo1 is a mechanosensitive ion channel found throughout the GI tract, but its role in the ENS is largely unknown. We hypothesize that Piezo1 plays an important role in the growth and development of the ENS.
View Article and Find Full Text PDFPediatr Surg Int
October 2024
Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
Purpose: Stem cell therapy offers a promising solution for congenital diseases like Hirschsprung's disease (HSCR). Optimizing stem cell efficacy by modifying the cells and their environment is crucial, but in vitro culture conditions need to be further improved. Glial cell-derived neurotrophic factor (GDNF) plays an important role in neuronal survival, proliferation, migration and differentiation during enteric nervous system (ENS) development.
View Article and Find Full Text PDFJCI Insight
July 2024
Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
The goal of this study was to determine if transplantation of enteric neural stem cells (ENSCs) can rescue the enteric nervous system, restore gut motility, reduce colonic inflammation, and improve survival in the Ednrb-KO mouse model of Hirschsprung disease (HSCR). ENSCs were isolated from mouse intestine, expanded to form neurospheres, and microinjected into the colons of recipient Ednrb-KO mice. Transplanted ENSCs were identified in recipient colons as cell clusters in "neo-ganglia.
View Article and Find Full Text PDFCells
May 2024
Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA 92093, USA.
This review addresses the need for innovative co-culture systems integrating the enteric nervous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment strategies. This review serves as an introduction to the companion protocol paper featured in this journal.
View Article and Find Full Text PDFJ Neurosci Methods
July 2024
Department of Surgery, University of Virginia, Charlottesville, VA, USA. Electronic address:
Background: The enteric nervous system (ENS) is comprised of neurons, glia, and neural progenitor cells that regulate essential gastrointestinal functions. Advances in high-efficiency enteric neuron culture would facilitate discoveries surrounding ENS regulatory processes, pathophysiology, and therapeutics.
New Method: Development of a simple, robust, one-step method to culture murine enteric neurospheres in a 3D matrix that supports neural growth and differentiation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!