Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s-1970s and shells from two Native American midden sites (∼1000-2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10-40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920315 | PMC |
http://dx.doi.org/10.1098/rspb.2016.0392 | DOI Listing |
Nanoscale
January 2025
Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
Tunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, . While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China. Electronic address:
Due to the increasing pollution of electromagnetic waves and the vigorous development of intelligent electronic devices, there is great interest in finding high-quality electromagnetic wave absorbing materials for integrated control boxes (ICBs) that integrate various electronic components. Polyaniline (PANI) is a new type of absorbing material with great potential due to its designable structure, simple preparation process, low density and adjustable conductivity. Herein, we prepared BCNF/PANI nanoscale conductive fibers with core-shell structure by in-situ growth of PANI on the surface of bacterial cellulose nanofibers (BCNF) by oxidative polymerization and further prepared cellulose/polyaniline/polyvinyl alcohol (BCNF/PANI/PVA) composite aerogel absorbing material by a freeze-drying process.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.
Developing heavy-metal-free materials with wide tunable emission is important to light-emitters. The alloying method is utilized in ZnSe magic size clusters (MSCs) with Te to form ZnSeTe and manipulate the band gap structure in ZnSe. The growth of ZnTe on alloyed ZnSeTe quantum dots (QDs) forms ZnSeTe/ZnTe core/shell nanostructures, showing the tunable photoluminescence emission peak from 450 to 760 nm with the different thicknesses of ZnTe shell.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
Currently commercial colorimetric paper lateral flow immunoassays exhibit insufficient limit of detection (LOD) and limited clinical sensitivity toward the detection of SARS-CoV-2 antigens, which causes a high false negative rate. To mitigate this issue, a new plasmon-enhanced fluorescence probe was developed for paper lateral flow strips (PLFSs). The probe is made of a sandwich-structured Ag-core@silica@dye@silica-shell nanoparticle in which fluorescent dyes are sandwiched between the plasmonic Ag core and the silica outer shell, and the separation distance between the Ag core and the dye molecules is controlled by the silica space layer.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!