Tetrahedrality and hydrogen bonds in water.

J Chem Phys

Institute of Chemistry, Eötvös University, P.O. Box 32, Budapest 112 1518, Hungary.

Published: June 2016

We carried out extensive calculations of liquid water at different temperatures and pressures using the BK3 model suggested recently [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. In particular, we were interested in undercooled regions to observe the propensity of water to form tetrahedral coordination of closest neighbors around a central molecule. We compared the found tetrahedral order with the number of hydrogen bonds and with the partial pair correlation functions unfolded as distributions of the closest, the second closest, etc. neighbors. We found that contrary to the number of hydrogen bonds, tetrahedrality changes substantially with state variables. Not only the number of tetrahedral arrangements increases with lowering the pressure, the density, and the temperature but the domain size of connecting tetrahedral structures as well. The difference in tetrahedrality is very pronounced between the two sides of the Widom line and even more so between the low density amorphous (LDA) and high density amorphous (HDA) phases. We observed that in liquid water and in HDA, the 5th water molecule, contrary to ice and LDA, is positioned between the first and the second coordination shell. We found no convincing evidence of structural heterogeneity or regions referring to structural transition.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4953555DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
12
liquid water
8
closest neighbors
8
number hydrogen
8
density amorphous
8
water
5
tetrahedrality hydrogen
4
bonds water
4
water carried
4
carried extensive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!