Optical properties of graphene nanoflakes: Shape matters.

J Chem Phys

Instituto de Investigaciones Fisicoquímicas de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (INFIQC - CONICET), Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina.

Published: June 2016

In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNFs) or graphene quantum dots (GQDs) are relevant for their electronic structure, thermal stability, and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4953172DOI Listing

Publication Analysis

Top Keywords

optical properties
8
graphene nanoflakes
8
edge type
8
properties graphene
4
nanoflakes shape
4
shape matters
4
matters years
4
years debate
4
debate edge
4
type graphene
4

Similar Publications

Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.

J Assoc Res Otolaryngol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.

Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).

Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).

View Article and Find Full Text PDF

Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.

Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.

View Article and Find Full Text PDF

Objectives: To characterize two experimental zirconia bilayer materials compared to their monolithic controls, before and after hydrothermal aging.

Methods: Commercial zirconia powders were utilized to fabricate two bilayer materials: 3Y-TZP+ 5Y-PSZ (3Y+5Y/BI) and 4Y-PSZ+ 5Y-PSZ (4Y+5Y/BI), alongside control groups 3Y-TZP (3Y/C), 4Y-PSZ (4Y/C), and 5Y-PSZ (5Y/C). Compacted specimens were sintered (1550 °C- 2 h, 3 °C/min), and half of them underwent hydrothermal aging (134 °C-20h, 2.

View Article and Find Full Text PDF

Development of fluorescent-photothermal probe based on photoinduced energy transfer: A dual-readout immunosensor for the detection of illegal additive.

Biosens Bioelectron

January 2025

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

The development of advanced optical probes for point-of-care testing holds great importance in the field of diagnostic technologies. This study focused on the synthesis of a probe featuring both fluorescent and photothermal responses with single excitation wavelength, which was achieved through the combination of oxidized camellia oleifera shell powder (OC) and Prussian blue nanoparticles (PBNPs). Notably, OC derived from the direct processing of raw material showed fluorescent and phosphorescent emissions simultaneously, and the positions of the two peaks overlapped with the absorbance range of PBNPs, making the fluorescent and phosphorescent emissions of OC effectively quenched by PBNPs.

View Article and Find Full Text PDF

This study aimed to investigate the impact of adding aroeira leaf extract (Schinus terebinthifolius Raddi) to a yam starch film matrix, focusing on the development of potentially active films and the evaluation of their physicochemical, mechanical, optical, and antioxidant properties. Films were produced using the casting method with varying extract concentrations (0, 3, 6, 12, and 15 %), yam starch (2 %), and glycerol (1 %). The antioxidant properties were analyzed by determining the total phenolic content, 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) radical scavenging, ferric reducing power, and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical elimination, which revealed a significant increase in antioxidant properties as the extract concentration increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!