PEGylation is commonly used to increase the plasma residence time of anticancer drug nanocarriers. However, PEGylation may trigger antibody production and lead to accelerated blood clearance in subsequent administrations. Moreover, the presence of PEG shells on nanocarriers may also hamper endosomal escape and decrease drug payload release. To avoid these shortcomings, we synthesized and evaluated a non-PEGylated, hyperbranched polyglycerol nanoparticle (HPG NP) with a hydrophobic core and a hydrophilic HPG shell, HPG-C10-HPG, as a candidate for systemic delivery of anticancer drug. In vitro studies with primary human cell lines revealed that HPG-C10-HPG possesses low cytotoxicity. The presence of long chain alkyl groups (C1o) in the core as the hydrophobic pocket in the NP enabled the binding and sustained release of the hydrophobic drug docetaxel. Remarkably, the docetaxel-loaded HPG-C10-HPG formulation also confers preferential protection to primary cells, when compared to cancer cells, potentially widening the therapeutic index. HPG-C10-HPG, however, accumulated at higher levels in the liver and spleen when administered intravenously in mice. Comparing the biodistribution patterns of HPG-C10-HPG, PEGylated HPG-C10-PEG, and unmodified HPG in a xenograft model reveals that the accumulation pattern of HPG-C10-HPG was attributed to insufficient shielding of the hydrophobic groups by the HPG shell. Our results revealed the influence of the nature of the hydrophilic shell and the presence of hydrophobic groups on the tumor-to-tissue accumulation specificities of these HPG NP variants. Therefore, the present study provides insights into the structural considerations of future HPG NP designs for systemic drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2016.2219DOI Listing

Publication Analysis

Top Keywords

hyperbranched polyglycerol
8
systemic drug
8
anticancer drug
8
hpg shell
8
hydrophobic groups
8
drug
6
hpg
6
hpg-c10-hpg
6
hydrophobic
5
design considerations
4

Similar Publications

Na-Complexed Dendritic Polyglycerols for Recovery of Frozen Cells and Their Network in Media.

Adv Mater

December 2024

Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.

In this study, a novel phenomenon is identified where precise control of topology and generation of polyglycerol induce the retention of Na ions in biological buffer systems, effectively inhibiting ice crystal growth during cryopreservation. Unlike linear and hyperbranched counterparts, densely-packed hydroxyl and ether groups in 4th-generation dendritic polyglycerol interact with the ions, activating the formation of hydrogen bonding at the ice interface. By inhibiting both intra- and extracellular ice growth and recrystallization, this biocompatible dendritic polyglycerol proves highly effective as a cryoprotectant; hence, achieving the cell recovery rates of ≈134-147%, relative to those of 10% dimethyl sulfoxide, which is a conventional cryoprotectant for human tongue squamous carcinoma (HSC-3) cell line and human umbilical vein endothelial (HUVEC) cells.

View Article and Find Full Text PDF

Multiple hour antifibrotic drug release enabled by a thermosensitive quadpolymer.

Int J Pharm

January 2025

Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710; Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707. Electronic address:

Article Synopsis
  • The study focuses on an innovative thermosensitive quadpolymer designed for injection to deliver anti-fibrotic drugs, specifically targeting uterine fibroids while potentially preserving fertility.
  • The quadpolymer functions as an injectable solution at room temperature and transforms into a stable gel at body temperature, allowing for sustained release of the drug pirfenidone.
  • Results showed that the pirfenidone-loaded quadpolymer effectively inhibited fibroid cell proliferation, indicating its potential as a localized treatment option for uterine fibroid therapy.
View Article and Find Full Text PDF

The interaction of unfractionated heparin (UFH) with universal heparin reversal agent 7 (UHRA-7) is investigated. UHRA-7 is composed of a hyperbranched polyglycerol core onto which an array of methylated tris(2-aminoethylamine) (Me-TREN) charged groups is grafted, which in turn are shielded with a layer of small chain poly(ethylene glycol) methyl ether (mPEG) chains. This system has previously been shown to be biocompatible and to be effective at neutralizing heparin.

View Article and Find Full Text PDF

This paper reports the development of a highly crosslinked hyper-branched polyglycerol (HPG) polymer bound to elastin-like proteins (ELPs) to create a membrane that undergoes a distinct closed-to-open permeation transition at 32 °C. The crosslinked HPG forms a robust, mesoporous structure (150-300 nm pores), suitable for selective filtration. The membranes were characterized by FTIR, UV-visible spectroscopy, SEM, and AFM, revealing their structural and morphological properties.

View Article and Find Full Text PDF

In the present study, low molecular weight cyclic polyglycidol is used as a macroinitiator for hypergrafting glycidol and producing cyclic graft hyperbranched polyglycerol (cPG-g-hbPG) in the molecular weight range of 10-10 g mol. Linear graft hyperbranched polyglycerol (linPG-g-hbPG) and hyperbranched polyglycerol (hbPG) are prepared as reference samples. This creates a family of hbPG structures with cyclic, linear, and star cores, allowing to evaluate their properties in solution and in bulk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!