Thrombin is a highly plastic molecule whose activity and specificity are regulated by exosites 1 and 2, positively-charged domains that flank the active site. Exosite binding by substrates and cofactors regulates thrombin activity by localizing thrombin, guiding substrates, and by inducing allosteric changes at the active site. Although inter-exosite and exosite-to-active-site allostery have been demonstrated, the impact of active site ligation on exosite function has not been examined. To address this gap, we used surface plasmon resonance to determine the effects of dabigatran and argatroban, active site-directed inhibitors, on thrombin binding to immobilized γA/γA-fibrin or glycoprotein Ibα peptide via exosite 1 and 2, respectively, and thrombin binding to γA/γ'-fibrin or factor Va, which is mediated by both exosites. Whereas dabigatran attenuated binding, argatroban increased thrombin binding to γA/γA- and γA/γ'-fibrin and to factor Va. The results with immobilized fibrin were confirmed by examining the binding of radiolabeled thrombin to fibrin clots. Thus, dabigatran modestly accelerated the dissociation of thrombin from γA/γA-fibrin clots, whereas argatroban attenuated dissociation. Dabigatran had no effect on thrombin binding to glycoprotein Ibα peptide, whereas argatroban promoted binding. These findings not only highlight functional effects of thrombin allostery, but also suggest that individual active site-directed thrombin inhibitors uniquely modulate exosite function, thereby identifying potential novel mechanisms of action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909201 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157471 | PLOS |
Anal Chem
January 2025
Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China.
Continuous and reagentless biomolecular detection technologies are bringing an evolutionary influence on disease diagnostics and treatment. Aptamers are attractive as specific recognition probes because they are capable of regeneration without washing. Unfortunately, the affinity and dissociation kinetics of the aptamers developed to date show an inverse relationship, preventing continuous and reagentless detection of protein targets due to their low dissociation rates.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127 Bonn, Germany.
Splanchnic vein thrombosis (SVT), which is particularly prevalent in myeloproliferative neoplasms (MPNs), has a multifactorial pathomechanism involving the anticoagulant protein C (PC) pathway. To better characterize the hypercoagulable state in SVT we assessed its key enzymes thrombin and activated PC (APC). The study population included 73 patients with SVT, thereof 36 MPN+, confirmed by bone marrow biopsy, 37 MPN-, and 30 healthy controls.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic stability, resistance in biological environment, and target affinity.
View Article and Find Full Text PDFFertil Steril
January 2025
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA. Electronic address:
Background: Thrombin prefers substrates carrying Arg at the site of cleavage (P1) because of the presence of D189 in the primary specificity (S1) pocket but can also cleave substrates carrying Phe at P1. The structural basis of this property is unknown.
Objective: Solve the X-ray structure of thrombin bound to a ligand carrying Phe at P1 and investigate the effects of replacing D189.
J Thromb Haemost
January 2025
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA. Electronic address:
Background: Thrombin prefers substrates carrying Arg at the site of cleavage (P1) because of the presence of D189 in the primary specificity (S1) pocket but can also cleave substrates carrying Phe at P1. The structural basis of this property is unknown.
Objective: Solve the X-ray structure of thrombin bound to a ligand carrying Phe at P1 and investigate the effects of replacing D189.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!