Using robust, integrated analysis of multiple genomic datasets, we show that genes depleted for non-synonymous de novo mutations form a subnetwork of 72 members under strong selective constraint. We further show this subnetwork is preferentially expressed in the early development of the human hippocampus and is enriched for genes mutated in neurological Mendelian disorders. We thus conclude that carefully orchestrated developmental processes are under strong constraint in early brain development, and perturbations caused by mutation have adverse outcomes subject to strong purifying selection. Our findings demonstrate that selective forces can act on groups of genes involved in the same process, supporting the notion that purifying selection can act coordinately on multiple genes. Our approach provides a statistically robust, interpretable way to identify the tissues and developmental times where groups of disease genes are active.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909280 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1006121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!