Effect of the Local Atomic Ordering on the Stability of β-Spodumene.

Inorg Chem

The University of Sydney , Faculty of Engineering and Information Technologies, School of Chemical and Biomolecular Engineering, Sydney, New South Wales 2006, Australia.

Published: July 2016

This study focuses on the relative energetic stability of β-spodumene configurations with different atomic ordering, evaluated using electronic structure methods based on static periodic density functional theory. We found that β-spodumene configurations with a framework containing exclusively Al-O-Si linkages are energetically the most stable, consistent with the aluminum avoidance principle. A correlation between the interstitial sites occupied by lithium and the stability of the configuration was established: highly stable configurations contain greater proportions of lithium associated with the edges of AlO4 tetrahedrons. The identified low-energy configurations have a band gap of ∼4.8 eV, and similar electronic band structures and densities of states. Both the PBE and PBEsol functionals predict small differences in the relative stabilities of the different configurations of β-spodumene. However, only PBEsol is able to reproduce the experimentally observed stability differences between α-spodumene and β-spodumene. β-Spodumene is the preferred polymorph at high temperatures, with the PBEsol inversion temperature from α- to β-spodumene predicted to occur at 1070 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.6b00344DOI Listing

Publication Analysis

Top Keywords

atomic ordering
8
stability β-spodumene
8
β-spodumene configurations
8
β-spodumene
7
configurations
5
local atomic
4
stability
4
ordering stability
4
β-spodumene study
4
study focuses
4

Similar Publications

Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.

View Article and Find Full Text PDF

Ferroelectric nematic (N) liquid crystals combine liquid-like fluidity and orientational order of conventional nematics with macroscopic electric polarization comparable in magnitude to solid-state ferroelectric materials. Here, we present a systematic study of twenty-seven homologous materials with various fluorination patterns, giving new insight into the molecular origins of spontaneous polar ordering in fluid ferroelectric nematics. Beyond our initial expectations, we find the highest stability of the N phase to be in materials with specific fluorination patterns rather than the maximal fluorination, which might be expected based on simple models.

View Article and Find Full Text PDF

Modeling inorganic glasses requires an accurate representation of interatomic interactions, large system sizes to allow for intermediate-range structural order, and slow quenching rates to eliminate kinetically trapped structural motifs. Neither first principles-based nor force field-based molecular dynamics (MD) simulations satisfy these three criteria unequivocally. Herein, we report the development of a machine learning potential (MLP) for a classic glass, B2O3, which meets these goals well.

View Article and Find Full Text PDF

Unveiling the electrochemical nitrogen reduction reaction mechanism in heteroatom-decorated-MoCS-MXene: the synergistic effect of single-atom Fe and heteroatom.

Mater Horiz

January 2025

Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.

Conversion of nitrogen (N) to ammonia (NH) is a significant process that occurs in environment and in the field of chemistry, but the traditional NH synthesis method requires high energy and pollutes the environment. In this work, the charge, orbital and spin order of the single-atom Fe loaded on heteroatom (X) doped-MoCS (X = B, N, O, F, P and Se) and its synergistic effect on electrochemical nitrogen reduction reaction (eNRR) were investigated using well-defined density functional theory (DFT) calculations. Results revealed that the X-element modified the charge loss capability of Fe atoms and thereby introduced a net spin through heteroatom doping, resulting in the magnetic moment modulation of Fe.

View Article and Find Full Text PDF

The compression behavior of iron oxyhydroxide ε-FeOOH is complex, with variations in its magnetic property and bonding character. In this study, in situ powder neutron diffraction experiments were conducted on ε-FeOOH and ε-FeOOD up to pressures exceeding 20 GPa to investigate a spin-reorientation (spin-flop) transition, hydrogen-bond (H-bond) symmetrization, and their correlation. The magnetic transition was observed at 8 GPa in both ε-FeOOH and ε-FeOOD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!