Long-term predictions of ecosystem acidification and recovery.

Sci Total Environ

Department of Geography and Environmental Science, University of Reading, PO Box 227, Reading RG6 6DW, UK.

Published: October 2016

This paper considers the long-term (500year) consequences of continued acid deposition, using a small forested catchment in S. England as an example. The MAGIC acidification model was calibrated to the catchment using data for the year 2000, and run backwards in time for 200years, and forwards for 500. Validation data for model predictions were provided by various stream and soil measurements made between 1977 and 2013. The model hindcast suggests that pre-industrial stream conditions were very different from those measured in 2000. Acid Neutralising Capacity (ANC) was +150μeqL(-1) and pH7.1: there was little nitrate (NO3). By the year 2000, acid deposition had reduced the pH to 4.2 and ANC to c. -100μeqL(-1), and NO3 was increasing in the stream. The future state of the catchment was modelled using actual deposition reductions up to 2013, and then based on current emission reduction commitments. This leads to substantial recovery, to pH6.1, ANC +43μeqL(-1), though it takes c. 250years. Then, however, steady acidification resumes, due to continued N accumulation in the catchment and leaching of NO3. Soil data collected using identical methods in 1978 and 2013 show that MAGIC correctly predicts the direction of change, but the observed data show more extreme changes - reasons for this are discussed. Three cycles of forest growth were modelled - this reduces NO3 output substantially during the active growth phase, and increases stream pH and ANC, but acidifies the soil which continues to accumulate nitrogen. The assumptions behind these results are discussed, and it is concluded that unmanaged ecosystems will not return to a pre-industrial state in the foreseeable future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.06.033DOI Listing

Publication Analysis

Top Keywords

acid deposition
8
year 2000
8
2000 acid
8
long-term predictions
4
predictions ecosystem
4
ecosystem acidification
4
acidification recovery
4
recovery paper
4
paper considers
4
considers long-term
4

Similar Publications

Metformin carbon dots enhance neurogenesis and neuroprotection in Alzheimer's disease: A potential nanomedicine approach.

Mater Today Bio

December 2024

Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.

Alzheimer's disease (AD) is characterized by progressive cognitive decline due to neuronal damage and impaired neurogenesis. Preserving neuronal integrity and stimulating neurogenesis are promising therapeutic strategies to combat AD-related cognitive dysfunction. In this study, we synthesized metformin carbon dots (CMCDs) using a hydrothermal method with metformin hydrochloride and citric acid as precursors.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells derived cytokines associated with AKT/IAPs signaling ameliorate Alzheimer's disease development.

Stem Cell Res Ther

January 2025

NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting around 50 million people worldwide. Bone marrow-derived mesenchymal stem cells (BMMSCs) have emerged as a promising source for cellular therapy due to their ability to differentiate into multiple cell types and their paracrine effects. However, the direct injection of BMMSCs can lead to potential unpredictable impairments, prompting a renewed interest in their paracrine effects for AD treatment.

View Article and Find Full Text PDF

Thiol-Enhanced Interfacial and Internal Deposition of Metal-Polyphenol Networks for Permanent Hair Dyeing.

ACS Biomater Sci Eng

January 2025

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.

Metal polyphenolic networks (MPNs) are becoming more and more attractive for nontoxic hair dyeing, but their coloring effect is not satisfactory because of the limited interfacial deposition and the absence of internal deposition. Moreover, there is a lack of understanding of the driving factors of the interfacial deposition of MPNs on hair. Herein, we develop a simple yet efficient strategy that transforms disulfide bonds of the hair into thiol groups by thioglycolic acid (TGA) to highly enhance the coloring effect of MPNs at a low temperature.

View Article and Find Full Text PDF

Lectin-Mediated Labeling of Alkaline Phosphatase for Enzymatic Silver Deposition-Based Electrochemical Detection of Glycoprotein Tumor Markers.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.

The screening of glycoprotein markers has become an integral part of the in vitro diagnosis of malignant tumors. Herein, an electrochemical method based on alkaline phosphatase (ALP)-mediated enzymatic silver deposition is reported for the highly sensitive detection of glycoprotein tumor markers, in which ALP enzymes are decorated to the glycan moieties of targets via the lectin-carbohydrate interactions. As glycoproteins are conjugated with multiple glycan chains, lectin-mediated labeling can result in the decoration of each target with multiple ALP enzymes.

View Article and Find Full Text PDF

Homozygous missense variant in causes early-onset neurodegeneration, leukoencephalopathy and autoinflammation.

J Med Genet

January 2025

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

Biallelic pathogenic variants in cause a fatal autosomal recessive multisystem disorder characterized by recurrent autoinflammation, hypomyelination, progressive neurodegeneration, microcephaly, failure to thrive, liver dysfunction, respiratory chain defects and accumulation of glycogen in skeletal muscle. No missense variants in have been reported to date.We report a 6-year-old boy with microcephaly, global developmental delays, lower limb spasticity with hyperreflexia, epilepsy, abnormal brain MRI, failure to thrive, recurrent fevers and transaminitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!