Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342453 | PMC |
http://dx.doi.org/10.18632/oncotarget.9908 | DOI Listing |
Objective: this retrospective study aimed to evaluate the impact of BRCA mutational status on the outcomes of patients with advanced ovarian cancer treated with either primary debulking surgery (PDS) or neoadjuvant chemotherapy followed by interval debulking surgery (NACT-IDS). Material and a total of 79 patients with stage III-IV ovarian cancer treated at Elias Emergency University Hospital between January 2014 and March 2024 were included. Patients received either PDS followed by chemotherapy or NACT-IDS.
View Article and Find Full Text PDFNeurol Neurochir Pol
January 2024
Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland.
Front Cell Dev Biol
December 2024
Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada.
Background: Dual inhibition of cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and programmed death ligand 1 (PD-L1) has been shown to be an effective treatment strategy in many cancers. We sought to determine the objective response rate of combination durvalumab (D) plus tremelimumab (TM) in parallel cohorts of patients with carefully selected rare cancer types in which these agents had not previously been evaluated in phase II trials and for which there was clinical or biological rationale for dual immune checkpoint inhibitor therapy to be active.
Methods: We designed a multi-centre, non-blinded, open-label phase II basket trial with each of the following 8 rare cancers considered a separate phase II trial: salivary carcinoma, carcinoma of unknown primary (CUP) with tumour infiltrating lymphocytes and/or expressing PD-L1, mucosal melanoma, acral melanoma, osteosarcoma, undifferentiated pleomorphic sarcoma, clear cell carcinoma of the ovary (CCCO) or squamous cell carcinoma of the anal canal (SCCA).
Oncol Lett
March 2025
Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
Although ovarian endometrioid carcinoma (OEC), frequently associated with endometrial endometrioid carcinoma (EEC), is often diagnosed at an early stage, the prognosis remains poor. The development of new, effective drugs to target these cancers is highly desirable. The bromodomain and extra-terminal domain (BET) family proteins serve a role in regulating transcription by recognizing histone acetylation, which is implicated in several types of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!